Posted on 06/15/2008 5:02:20 PM PDT by cryptical
Singapore scientists at the Genome Institute of Singapore (GIS) and the National University of Singapore (NUS) have unveil an atlas that showing the location of "genomic hotspots" of essential protein "switches" (transcription factors) that are critical for maintaining the embryonic stem (ES) cell state.
Using advanced high throughput sequencing technology, the scientists discovered over 3,000 hotspots. These findings could improve understanding of the unique properties of stem cells that enable them to maintain their intriguing ability to grow and differentiate to virtually any cell type.
"This is the first time such a large scale study has been conducted in Singapore and obtaining such groundbreaking results has caused much excitement," said Wei Chia Lin, Ph.D., Senior Group Leader at GIS. "This blueprint that we obtained is like a treasure map, pointing us to specific sites where we can further study how these switches interact within the cell. Hopefully, this will eventually allow us unlock the secrets of stem cells."
Ng Huck Hui, Ph.D., also a Senior Group Leader at GIS, added, "we think that these 'stemness' hotspots are the most critical points in the genetic blueprint of ES cells. By targeting these hotspots, we may be able to reconnect the wiring in non-stem cells and jump-start the stem cell program in them. This can potentially create an inexhaustible source of clinically useful cells for regenerative medicine or cell based therapies in the future." The team has already started work to investigate further into this area of research.
"Using cutting edge sequencing technology, scientists from the GIS and NUS have identified hotspots in embryonic stem cells," said Prof. Lee Eng Hin, Executive Director of A*STAR's Biomedical Research Council. "These are important hubs of the genome of embryonic stem cells. This piece of work illustrates how scientists from different disciplines and across institutions can come together to define fundamental features of these intriguing cells."
"In this new paper in Cell, the team at the GIS continues their remarkable progress in defining the precise DNA sequences to which an important group of 13 transcriptional factors bind in mouse embryonic stem cells," said Alan Colman, Ph.D., Executive Director of Singapore's Stem Cell Consortium. "This particular group of factors is responsible for maintaining the self renewal and pluripotency of the embryonic stem cells. The team shows that many of the factors which bind to the same gene regions ('hotspots') and their work provide a working model of the transcriptional networks at play within the cells, and how these intracellular networks are linked to events that can be influenced by external stimuli."
The researchers performed genome-wide mapping of the in vivo binding sites for 13 sequence-specific transcription factors in ES cells. These transcription factors play different roles in self-renewal, pluripotency, reprogramming and chromatin insulation. This study uncovers two major modes of binding that give rise to transcription factor co- localization hotspots. The Nanog/Oct4/Sox2 centric hotspots are commonly co-bound by Smad1 and STAT3 and they represent points of integration for the intrinsic and external signaling pathways. The combinatorial wiring of transcription factors is important in deciphering the code behind gene expression program in ES cells.
The work done by the GIS team is a follow up on a series of ongoing research ( "The Oct4 and Nanog transcription network that regulates pluripotency in mouse embroynic stem cells," Nature Genetics 38:431-440, 2006) into understanding and mapping the transcriptional networks of master genes in ES and somatic cells.
Journal reference:
1. . Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell, June 13, 2008
If you think using embryonic syem cells is progress, than so is Eichmann.
Folding@Home FAQ for new users:
What is Folding@Home? A Stanford University project to find out how proteins fold.
Why it's important: Proteins folding wrong causes all kinds of diseases, like Alzheimer's, Parkinson's, and forms of cancer. Folding@Home uses novel computational methods and large scale distributed computing, to simulate timescales thousands to millions of times longer than previously achieved. Through Folding@home, scientists now have the horsepower to study the mechanics of protein folding. With its ability to share the workload among hundred of thousands of computers economically, Folding@home can help scientists understand how proteins snap, or don't, into their predestined shapes - and may help to explain the origins of diseases such as Alzheimer's and apparently unrelated diseases. We're fueling research that could end all that.
How does it work?: You download a safe, tested program (see link below) that is certified by Stanford University. It gets work from Stanford, runs calculations using your spare computer power, and sends the results back to the University.
Is it safe? Yes! Folding@Home rarely effects computer performance in any way and won't compromise your privacy in any way. It only uses the computing power you aren't using so it doesn't slow down other programs.
How do I get started folding for Team FreeRepublic?:
1.) Download the folding program from Stanford University's folding download page (Folding@home Client Download). Type in your desired user-name.
2.) Type in 36120 for the team number. THIS IS VERY IMPORTANT - if you get the number wrong, you won't be folding for team FreeRepublic!
3.) The third question asks, "Launch automatically at machine startup, installing this as a service?" - We recommend you answer YES. Otherwise you will have to manually start the program after every reboot.
How can my computer help? Even if they were given exclusive access to all of the world's supercomputers, Stanford still wouldn't have as much processing power as they get from the supercluster of people's desktop systems Folding@home relies on. Modern supercomputers are essentially a cluster of hundreds of processors linked by fast networking. But Stanford needed the power of hundreds of thousands of processors, not just hundreds.
There's no reason to not get involved! It's free, easy, and you can know you're helping every minute without lifting a finger.
*******************************************
List of Relevant Folding Links
Why Fold - Watch This !!
Extreme Overclockers Stats for FreeRepublic
*******************************************
Competition (Not!!) Dummies ..Daily Kos
Dummie Folding Threads #7 #8 #9#10#11 #12
Hey DUmmies, can't ya'll post a new thread at least once a year?
**************************************************
Other Useful Stuff - Links
How much are those work units worth? And what are they?
All Projects Listed
Point Summary for Workunits
Fahmon Third Party Monitoring Software
**************************************
Past FreeRepublic Folding threads
#1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 #17 #18 #19 #20 #21 #22 #23 #24 #25 #26 #27 #28 #29 #30 #31 #32 #33 #34 #35 #36 #37 #38 #39 #40 #41 #42 #43 #44 #45 #46 #47 #48 #49
I hope you don’t mind that I stole your stuff for the above post.
So what ever happened to ‘adult stem cells,’ what about stem cells produced in the bone marrow? Why don’t we ever hear about that?
All of this happened by random selection. To think there might have been an intelligent designer just doesn’t wash! /s off.
Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.