Sure it has. Gödel's Incompleteness Theorem applies to any axiom system at least as strong as Peano arithmetic, as long as that theory is consistent and is recursively axiomatizable (which means that there is a computer program that would list precisely the axioms of the system, if allowed to run forever -- in other words, it means that you actually can tell what the axioms are). In fact, there are weak subsystems of Peano arithmetic that will do.
Anyway, this applies to Zermelo-Fraenkel set theory, for example, as well as any common variant, extension, etc. If ZF is consistent, then the sentence that asserts "ZF is consistent" is neither provable nor disprovable in ZF.
That's what I thought too.
Incidentally
I've never understood why G's theorem is thought to be profound.
To paraphrase it slightly
it simply says that certain chess positions can not be reached
by a series of legal moves.
This doesn't happen with arithmetic because you can enumerate the theorems of arithmetic. If you try to enumerate the theorems of set theory in the same way, you hit a snag once you have sets of cardinality greater than the integers and start having theorems about each element of them. Sure you can set up some enumeration scheme, based on applying whatever operations are allowed in some definite order. But this enumeration won't be "onto" for the possible theorems of set theory.