Free Republic
Browse · Search
News/Activism
Topics · Post Article

To: Right Wing Professor
One more reply to myself; there is a phenomenon called chemiluminescence, which occurs because certain chemical reactions produce molecules in excited states, which then emit light to go into the ground state. That's how fireflies flash. A lot of tissues undergoing oxidative damage produce hydroxyl radicals, peroxides and superoxides, which react with proteins, lipids and nucleic acids, which then chemiluminesce at low levels. My guess is these 'biophotons' are chemiluminescence. Microsomes in particular chemiluminesce, since these are the organelles that do a lot of the oxidative detoxification in the cells.
1,051 posted on 12/12/2003 1:23:06 PM PST by Right Wing Professor
[ Post Reply | Private Reply | To 1048 | View Replies ]


To: Right Wing Professor; betty boop; PatrickHenry; js1138; Phaedrus; Doctor Stochastic
I think you are stating the obvious, Right Wing Professor. If the cell emitted any significant amount of photons then fluorescent microscopy would not be possible. Popp et al are speaking of a very tiny (ultraweak) emission. There are many researchers working on biophotons, especially in China or so it appears.

I'm going to be out of town this weekend, but I didn't want the other side to be lacking advocacy. So for all of you and for Lurkers who may be interested in biophotons:

Definition from ScienceDaily

Biophotons are photons (light) produced by cell activity, in a phenomenon also known as ultraweak bioluminescence and dark luminescence. The exact origin of this emission is as yet unclear.

Like all objects animate and inanimate, cells emit a characteristic "black body" distribution of wavelengths of photons, in a manner directly related to temperature. However, after compensating for this distribution, a number of photons (on the order of as many as 100 photons/cm²/sec) are detected over a range of wavelengths in the visible to ultraviolet range. The amount of light emitted is quite small; comparable to that observed from a candle viewed at a distance of 10 kilometers. The detection of these photons waited upon development of sensitive photomultipliers in the 1960s and 1970s.

It is not particularly surprising for a cell's metabolism to produce light; for example, many bacteria and other cells produce light through the use of a particular protein (luciferin). Given the extremely small number of photons produced (the above number corresponds roughly to a single photon per cell per hour, assuming a rather large cell diameter of 100 micrometers), for many years the predominant theory was that these photons were a random by-product of cellular metabolism.

Normal cell metabolism occurs in a chain of steps, each step involving a small energy exchange, for greater efficiency. With some degree of randomness ensured by thermodynamics, it would then be expected that some (unknown) number of these chains would possibly "skip" one or more steps. The resulting loss of efficiency would then be detected as a photon being emitted.

According to the simplest model of this theory, the observed frequency at which photons would be detected would then be expected to obey a standard random distribution. However, some scientists have claimed to detect a significant variance from the expected distribution of photons, as well as an additional coherence or coordination of the time when photons are emitted by distinct cells. The photons emitted as part of this (unknown) luminescent process were dubbed "biophotons" (by F. A. Popp) to indicate their origin. At present there is no adequately tested theory for the production of these extra photons; and the final answer may require a careful examination of the experimental method, and could involve a variety of modes of production. For example, in keeping with the "random production" theory, biophotons are more prevalent in damaged cells, presumably due to the extra presence of free radicals.

In the absence of a mechanism which produces these photons, some have speculated that biophotons are involved in various cell functions such as mitosis; or alternatively that they are produced and detected by proteins in the cell nucleus, possibly DNA.

It is further speculated by some that these emissions are part of a system of cell to cell communication of more complexity than the modes of cell communication already known, such as chemical signalling; and that they are important in the development of larger structures such as the organs.

Some have been inspired to associate biophotons with the concept of "Qi" from acupuncture, and these emissions have even been postulated as being fundamental to consciousness

A Model for Biophotons (by a novice)

International Conference on Biophotons in China 10/2003

Remarks on an Article in New Scientist

…Yet some believe that biophotons are far more than just distress signals. In the early 1990s, Guenter Albrecht-Buehler, a biophysicist at Northwestern University Medical School in Chicago, discovered that some cells can detect and respond to light from others.

He shone infrared light onto a mixture of cell-sized latex beads and mouse fibroblast cells. Many of the cells began to stretch out their arm-like pseudopodia for light scattered towards them by the beads, and soon these cells were heading directly for the beads. Some even turned 180° to reach them. (With little power and a wavelength of around 850 nanometres, the light created virtually no heat, so the cells weren't simply moving towards warmth, argues Albrecht-Buehler.) And since some cells reached out to two different light sources of equal intensities at the same time, it seems that they could "see" each source distinctly, he suggests.

In other experiments, Albrecht-Buehler spread hamster cells on both sides of a sheet of glass. As the cells grew, he found that those on one side shifted around until they lay at angles of more than 45° to those on the other side of the glass. But when he added a filter layer to the glass that blocked infrared light transmission from one side to the other, the cells grew in random directions (New Scientist, 7 November 1992, p 14).

Tissues favour a criss-cross arrangement of cells because it gives them extra strength, so perhaps the cells on the glass were using light to signal their orientation. If so, they must have some kind of eye. Albrecht-Buehler thinks the cell's centrioles fit the bill. These cylindrical structures have slanted "blades" which he believes act as simple blinds. By only allowing light into the centriole from certain angles, the blinds enable simple photoreceptors inside the centrioles such as haem molecules to tell which direction photons are coming from. And microtubules-hollow filaments that thread through cells-could act as optical fibres, he believes, feeding light towards the centrioles from the cell's wall.

But why should cells want to detect light? The most obvious answer is that they are talking to each other, says Albrecht-Buehler. Cells in embryos might signal with photons so that they know how and where they fit into the developing body.

And now he wants to learn their language. He envisages doctors telling cells what they want them to do in words they understand. You might tell cancer cells to stop growing or encourage cells near wounds to start again. "We may learn to compose our own messages in the language of cells to compel them to carry out specialised tasks that they've never performed."…

Penrose: Doubting of a Shadow

14.9 In this connection, I should mention something of considerable interest and relevance that I learned recently from Guenther Albrecht-Buehler (1981, 1991), which concerns the role of the centriole, that curious "T" structure (roughly illustrated in Shadows, Fig. 7.5, on p.360), consisting of two cylinders resembling rolled-up venetian blinds, constructed from microtubules and other connectingsubstances, which lies within the centrosome. In Shadows, I had adopted the common view that the centrosome acts in some way as the "control centre" of the cytoskeleton of an ordinary cell (not a neuron), and that it initiates cell division. However Albrecht-Buehler's idea about the role of the centriole is very different. He argues, convincingly, in my opinion, that the centriole is the eye of the cell, and that it is sensitive to infra-red light with very good directional capabilities. (Two angular coordinates are needed for identifying the direction of a source. Each of the two cylinders provides one angular coordinate.) Impressive videos of fibroblast cells provide a convincing demonstration of the ability of these cells to pinpoint the direction of an infra-red light source. This also provides some remarkable evidence for individual cells having considerable information-processing abilities, which is at variance with current dogma. One may well ask where the "brain" of a single cell might be located. Perhaps its structure of microtubules can serve such a purpose, but it does seem that the centrosome itself must have some central organizing role. In a single (non-neuronal) cell, the microtubules emanate from the centrosome. I gather from Albrecht-Buehler that the specific contents of the centrosome are not known. It seems that it would be important to know what indeed is going on in the centrosome. Does it have some information-processing capabilities? Is there conceivably some structure there that is capable of sustaining quantum coherence in any form? The answers to questions of this nature could have considerable importance.

14.10 I should make clear that I am not arguing for any consciousness (or consciousness of any significant degree) to be present for individual cells. But according to the views that I have been putting forward, some of the ingredients that are needed for actual consciousness ought already to be present at the cellular level. Individual cells can behave in strikingly sophisticated ways, and I find it very hard to see how their behaviour can be explained along entirely conventional (classical) lines.


1,061 posted on 12/12/2003 8:05:20 PM PST by Alamo-Girl
[ Post Reply | Private Reply | To 1051 | View Replies ]

Free Republic
Browse · Search
News/Activism
Topics · Post Article


FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson