Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Warfare at the speed of light
Oakland Tribune ^ | 2003-10-19 | Ian Hoffman

Posted on 10/19/2003 6:12:40 PM PDT by Lorenb420

DOWN THIS tiled corridor, light does muscular, noisy work. Lasers dig dirt and weld metal. They pound aircraft parts into shape.

In Bob Yamamoto's lab, light devours.

He straps on emerald green goggles. A technician stabs a fire button and calls out the computer countdown. "Three ... two ... one ..."

Then ... nothing. Just a buzz of electronics and an ephemeral glow in this darkened room at Lawrence Livermore Laboratory. But inside Yamamato's target chamber, a block of steel spits flame and molten metal.

In those two seconds, 400 blasts of light poured into slabs of clear, manmade garnet. Swollen in energy, the crystal's atoms then unleashed torrents of infrared light to ricochet 1,000 times between two mirrors and multiply, finally escaping as 400 pulses of pure, square beam.

Kilowatt for kilogram, this is

the world's most powerful solid-state laser. Its invisible beam drilled Yamamoto's inch-thick steel plate in two seconds. Add larger crystals and it will eat steel a mile or more away.

"What we're building," Yamamoto explains, "is a laser weapon."

After sinking 40 years and billions of dollars into beam weapons, defense scientists are on the cusp of what could be a military revolution -- warfare at the speed of light.

"We've made a quantum leap here," said Randy Buff, solid-state laser program manager for the U.S. Army's Space and Missile Defense Command. "We're anxious to get out there and do something."

No longer are laser guns the stuff of Hollywood and Strategic Defense Initiative fantasy. Instead of laser-guiding bullets and "smart" bombs, the Pentagon inside of a decade could be armed with a beam weapon that is near-instantaneous, gravity-free and truly surgical, focusing to such hair-splitting accuracy that it could avoid civilians while predetonating munitions miles away.

A laser arms race already is under way, chiefly in California. The prize is billions of dollars. Three families of high-energy beams -- powered by combusting chemicals, electron accelerators and crystals, such as Yamamoto's -- are vying for the Pentagon's eye.

Defense contractors are sniping at each other's designs, and corporate alliances are shifting. But no one seems to doubt that battle lasers -- perhaps mounted on Humvees, jet fighters and unmanned aircraft -- could knock down previously untouchable targets such as artillery shells, mortars, surface-to-air missiles and even cruise missiles at ranges of up to dozens of miles in good weather. In clear air above the clouds, a high-powered laser could lance out 500 miles to destroy rising ballistic missiles.

"If we had them today, they'd be at the former Saddam Hussein International Airport, making sure no one gets off a shoulder-launched missile at an aircraft," said Mike Campbell, a laser expert at General Atomics in San Diego.

By coaxing a huge power boost out of tiny laser diodes like those in CD players, scoreboards and supermarket scanners, scientists are squeezing unprecedented power out of lasers made of exotic crystals -- distant cousins of the world's first laser, which Theodore Maiman fashioned from a ruby cylinder in 1960.

The latest breed of solid-state lasers now are poised to break the dominance of giant, chemical gas-powered beams with compact, mobile weapons that can run off a Humvee's diesel engine or a jet fighter's turbine.

Experts liken this evolution to the shift from 1950s vacuum tubes to the solid-state transistors now driving everything electronic.

"We think the whole thing's going to go solid state," said Lloyd Hackel, chief of laser science technology at Livermore Lab. "Gas lasers are sort of the vacuum tubes of lasers. They work, but in terms of density, intensity and reliability, it's going to go solid state."

No coherent military plan

The Pentagon's economic power places the military at the decisive center of this transition. So far, however, experts say the Defense Department has no coherent plan for speed-of-light weapons research, scattering projects among the Air Force, Army and Navy.

As an offshoot, few in the Pentagon are grappling with the implications of highly mobile laser forces:

Are military computers and commanders ready for entirely automated weapons that deliver instant, lethal blasts of energy and can be retargeted in seconds? Lasers under testing for air defense already offer that capability. Fully automated firing on offensive targets is a short step behind.

"When you develop the capability to track, target and destroy something in a second, then the temptation to remove humans from the decision cycle becomes very great," said Loren Thompson, chief operating officer at the Lexington Institute, an Arlington, Va.-based defense think tank.

Will U.S. forces fire lasers on humans? International treaty forbids the use of lasers for blinding people. But there is no legal ban on striking humans. U.S. Special Operations Command wants to load a medium-power laser alongside artillery and miniguns on a future version of the AC-130 gunships that since Vietnam have been a mainstay of special forces attacks on ground targets. The laser's power could blow tires and ignite gas tanks, but wouldn't be lethal for tanks or armored vehicles.

"It would be a very long-range, ultra-accurate sniper rifle," suggests John Pike, a weapons expert and director of GlobalSecurity.org.

The likely targets, Thompson said, "would be some sort of lighter vehicle or combustible structures or it could be people. Remember we're talking about a system that can be instantenously retargetable."

Will the payoff of battle lasers sufficiently outweigh their huge drawback -- loss of power and range in bad weather, fog, dust and smoke -- that the U.S. military will shift toward fair-weather operations?

Is the United States willing to defend or attack satellites with lasers? The Air Force's Airborne Laser is to start test-firing against missiles in 2004. But the longer range of its laser in the thinner, upper atmosphere brings space vehicles within targeting.

How will other nations respond? Experts believe the United States could enjoy a near monopoly on battle lasers for years. But under what circumstances will it justify their use in the face of likely international opposition?

Well before the end of the Cold War, Pentagon technocrats talked of "transformation" of the military -- a fusing of electronic eyes, fast communications and data crunching with precision weapons to wage war at hyperspeed and high efficiency.

But despite compressing the time to identify and attack adversaries, U.S. weapons are still chained to the slow, Newtonian physics of explosives, chemical propellants and metal projectiles, and are still restrained by gravity.

Ballistic warheads can strike at speeds greater than Mach 20. But readying them for launch takes several minutes at least and delivering them several more. Lasers race to target at roughly Mach 860,000.

"There's no problem with dodging the bullet," said the Lexington Institute's Thompson.

With that allure, the Bush administration has specified that the signature vehicles, aircraft and vessels of the next-generation military accommodate futuristic weapons.

Defense contractors are shoehorning laser bays into future fighters, tilt-rotor aircraft and helicopters. Humvees are going to hybrid diesel engines, and the Navy's new DDX destroyer to all-electric drive. The military wants to cuts its logistical burden of fuel supply, but a secondary reason is extra electrical power for energy weapons.

"They would have substantial surplus capability for some power-hungry weapon of the future, and whether that would be a laser or a microwave gun or a rail gun isn't certain," said GlobalSecurity's Pike.

The era of battle lasers began in the mid-1990s, when military scientists in New Mexico burned a hole in a Scud missile standing miles away. Soon after, a powerful chemical laser funded by the Pentagon and the Israeli Defense Force began blasting rockets and artillery shells out of midair. Scientists think such lasers have promise for knocking down mortar shells.

Mortars and artillery are so lethal for infantry that they account for nearly half of U.S. combat deaths in Iraq. But no effective defense exists.

'Let your imagination go'

"Nobody thought that could be done," said Josef Scwartz, program manager for the Mobile Tactical High Energy Laser at Northrop Grumman. "Everybody thought you'd just hide in a hole. Now you have the ability to shoot it out of the sky. And if you can do that, you can let your imagination go."

Defense theorists already are performing computer simulations of laser battles. "What it does is change the battlefield," said Thomas McGrann, a military operations analyst who runs battle simulations in Livermore Lab's Q Division. "What we're seeing is, he fires something at me, I knock it down. Anywhere from one to three kilometers out, I'm going to suppress his fire. And when he sends his UAVs (unmanned aerial vehicles) up -- and they're hard targets to kill -- I can take them out. An Army guy says he's taking fire from a wooded hillside. We start a fire there."

But forget about "Star Wars" and blaster pistols knifing the air with multi-colored beams. Visible lasers so far don't pack sufficient punch over distance to be useful weapons.

The laser battlefield will be largely invisible. Targets will explode, break apart in midair or burst into flame without apparent cause.

Soldiers won't buckle themselves into a laser cannon. The earliest battle laser systems are designed to defend U.S. troops and aircraft against airborne shells and missiles. That means computerized systems for tracking, targeting and firing faster than humans can react.

And the world's first laser weapons won't be worn on the hip: The most technically mature candidates are sprawling monstrosities weighing 50 tons and filling the better part of a Boeing 747 or, in the case of Northrop's MTHEL, a full-sized drug store, backed by chemical tanks or factories to recharge the lasers.

That's been the story of laser weapons for years. Chemical lasers are proven at delivering high-powered beams at great distances -- if they have enough chemicals. Scwartz' challenge is shrinking its laser by a fifth, to fit inside two cargo containers, packed inside a C-130 cargo plane.

"Can we do it?" he said. "We think we can."

But some Army officials are wary of hauling tanks of flammable, toxic chemicals into a war zone. A former Pentagon official noted that a .50-caliber armor-piercing/incendiary bullet could ignite a toxic explosion.

Once the laser stops firing, it must vent hot chemicals. That chemical and thermal signature could make a weapon traveling in two tractor trailers a conspicuous target.

Ultimately, battlefield lasers will have to be more compact, mobile enough to fit in the tail of the helicopter, in the belly of a jet fighter or in the backseat of a Hummer.

"Solid-state lasers seem to be the ideal for laser weaponry," Thompson said. "The basic design seems to be less complicated than either free-electron or chemical lasers and it seems to be more easily incorporated, say, into a fighter. They have more potential over the long run because of their potential compactness and the flexibility of their power sources."

The most powerful electric laser is taking shape in Yamamoto's lab at Lawrence Livermore, where pursuit of hydrogen fusion has produced two generations of laser jocks and the world's most powerful solid-state lasers.

"If you want something small enough and light enough to put on a Humvee or the back of a copter and have enough oomph to do something, the way to do it is a solid-state laser," Yamamoto said.

Experts agree battle lasers need at least 100 kilowatts of power. The Pentagon wants to see who will get to 25 kilowatts first in 2004.

Yamamoto is a veteran builder of lasers and atom smashers. Next to those, the laser weapon sitting on his lab bench is easy: It's modular. He just adds another 4-inch slab or two of manmade garnet and surrounds it with diodes. He expects to beat 25 kilowatts by Christmas and double it early next year. To reach 100 kilowatts will take more and bigger slabs.

Yamamoto's problem is heat. Lasing makes the crystals warm inside and corrupts the light beam. Eventually, the slabs can crack and shatter. They're thick and don't cool well in chilled water or gases. Livermore's laser designers had a simpler idea: Build two or more of the compact lasers in cassettes and rotate them when hot.

A leap in efficiency

But the real innovation that makes solid-state lasers worthwhile for defense are high-power diodes. Instead of using flashlamps like Maiman's ruby and the National Ignition Facility, Yamamoto's laser is pumped by more than 8,000 diodes. They're 10 times as efficient.

In theory, that means a liter of everyday Army diesel fuel costing as little as $1 will generate enough rapid-fire laser pulses to destroy a standard airborne missile. The job now falls to Patriot missiles costing $3 million apiece.

The question is, will solid-state lasers that today resemble science projects, full of glass, mirrors and banks of sensitive electronics take the beating of battle?

"You have to get these lasers out in the field to see if they work. If you hit a bump in the road, do they hold up? Do you need five Ph.D.s to make them work?" said General Atomics' Campbell.

Moreover, all laser guns will, for the forseeable future, remain fair-weather weapons. Airborne particles and vapor diffuse the beam and cut its range enormously. Smart adversaries will attack under cover of smoke or inclement weather.

"In the first order, lasers are not going to work on bad days," Campbell said. "They're just not."

But then, neither do so many of the optical sensors on which U.S. forces depend for information-accelerated warfare.

"I'm sure there will be many games to be played in measures and countermeasures and counter-countermeasures," said Northrop's Scwartz. But the rule of thumb is "if you see a target, you can kill that target."


TOPICS: Extended News; Foreign Affairs; News/Current Events; Technical
KEYWORDS: arab; lasers; miltech; particalweapons; solidstate; solidstatelaser; superweapons; techindex; utah
Navigation: use the links below to view more comments.
first 1-2021-4041-6061-68 next last

1 posted on 10/19/2003 6:12:40 PM PDT by Lorenb420
[ Post Reply | Private Reply | View Replies]

To: Lorenb420
They're thick and don't cool well in chilled water or gases. Livermore's laser designers had a simpler idea: Build two or more of the compact lasers in cassettes and rotate them when hot.

Sweet! A sort of laser Gatling gun....

2 posted on 10/19/2003 6:27:30 PM PDT by Paradox (I dont believe in taglines, in fact, this tagline does not exist.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Paradox
Why not park a constellation of these solid state lasers in low earth orbit, and let them get their power from parabolic solar collectors? Cooling becomes far less of a problem, and the input power is nearly infinite.

Adds new meaning to calling for 'air support'.
3 posted on 10/19/2003 6:34:31 PM PDT by 11B3 (Old enough to remember the real America, young enough to fight to bring it back.)
[ Post Reply | Private Reply | To 2 | View Replies]

To: Bear_in_RoseBear
Pingpingping!
4 posted on 10/19/2003 6:41:36 PM PDT by Rose in RoseBear (HHD [... zzzzzt! ...])
[ Post Reply | Private Reply | To 1 | View Replies]

To: Lorenb420
brl
5 posted on 10/19/2003 6:41:57 PM PDT by dts32041 (Is it time to practice decimation with our representatives?)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Lorenb420
Chemical offers the best bang for the buck right now, but hopefull solid-state will catch up. It just makes things so much easier.
6 posted on 10/19/2003 6:44:37 PM PDT by July 4th
[ Post Reply | Private Reply | To 1 | View Replies]

To: Paradox
Yes, they could have banks of them. Sounds familiar somehow.
7 posted on 10/19/2003 6:55:57 PM PDT by Hugin
[ Post Reply | Private Reply | To 2 | View Replies]

To: 11B3
Why not park a constellation of these solid state lasers in low earth orbit

...or load 'em up on AC-130's.
8 posted on 10/19/2003 6:56:13 PM PDT by AdA$tra (Hypocricy is the Vaseline of social intercourse....)
[ Post Reply | Private Reply | To 3 | View Replies]

To: sourcery; Ernest_at_the_Beach
ping
9 posted on 10/19/2003 7:04:03 PM PDT by Libertarianize the GOP (Ideas have consequences)
[ Post Reply | Private Reply | To 8 | View Replies]

To: Paradox
No longer are laser guns the stuff of Hollywood and Strategic Defense Initiative fantasy.

If what had been considered (at least by some) to be mere fantasy is found to be quite real, then I submit it was never properly considered fantasy in the first place.

10 posted on 10/19/2003 7:15:01 PM PDT by sourcery (Moderator bites can be very nasty!)
[ Post Reply | Private Reply | To 2 | View Replies]

To: Lorenb420
"No coherent military plan"

Some copy editor has a not-so-subtle sense of humor.

11 posted on 10/19/2003 7:22:04 PM PDT by sourcery (Moderator bites can be very nasty!)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Lorenb420
Can you imagine the psychological effect a laser attack would have on an attacking force? Say an enemy division heads towards an American unit equipped with such weapons. Suddenly their vehicals and equipment start exploding. No sound of incoming missiles or artillery. No airplanes or helicopters overhead. No visible reason for the explosions. They figure out they're under attack and fire artillery and mortars at the Americans only to have their rounds explode in mid-flight. Air support is called in but no sooner have the attacking aircraft come into range then their fuel tanks or ordinance loads explode. Talk about fire suppresion. There are even reports that indicate that this technology may become so accurate as to be able to shoot down bullets in flight as well. That would indeed totally change the face of warfare. Yikes!
12 posted on 10/19/2003 7:34:37 PM PDT by Reaganesque
[ Post Reply | Private Reply | To 1 | View Replies]

To: sourcery
"We've made a quantum leap here," said Randy Buff, solid-state laser program manager for the U.S. Army's Space and Missile Defense Command.

A Solid-state program manager has a not-so-subtle sense of humor.

13 posted on 10/19/2003 7:41:07 PM PDT by DManA
[ Post Reply | Private Reply | To 11 | View Replies]

To: Lorenb420

14 posted on 10/19/2003 7:47:37 PM PDT by martin_fierro (A v v n c v l v s M a x i m v s)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Libertarianize the GOP; *tech_index; Lorenb420; Salo; MizSterious; shadowman99; Sparta; freedom9; ..
Thanks for the ping.

Fascinating!

OFFICIAL BUMP(TOPIC)LIST

15 posted on 10/19/2003 7:54:59 PM PDT by Ernest_at_the_Beach (Davis needs to get out of Arnoold's Office)
[ Post Reply | Private Reply | To 9 | View Replies]

To: Lorenb420
Experts believe the United States could enjoy a near monopoly on battle lasers for years.

What a joke! I bet that the Chicoms already have spied on most of what Livermore has produced.

16 posted on 10/19/2003 8:15:02 PM PDT by DeweyCA
[ Post Reply | Private Reply | To 1 | View Replies]

To: Lorenb420
ok but what do they reeeeaaaaaaaly have.
17 posted on 10/19/2003 8:42:46 PM PDT by longtermmemmory (Vote!)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Reaganesque
Can you imagine the psychological effect a laser attack would have on an attacking force? Say an enemy division heads towards an American unit equipped with such weapons. Suddenly their vehicals and equipment start exploding. No sound of incoming missiles or artillery. No airplanes or helicopters overhead. No visible reason for the explosions. They figure out they're under attack and fire artillery and mortars at the Americans only to have their rounds explode in mid-flight. Air support is called in but no sooner have the attacking aircraft come into range then their fuel tanks or ordinance loads explode.

Even better: An enemy division is sitting on the tarmac at its home base. Suddenly their vehicles and equipment start exploding. No sound of incoming missiles or artillery. No airplanes or helicopters overhead. No visible reason for the explosions. No Americans around. No Americans within seven thousand miles of their base! As the ammo dump explodes, the commander of the enemy attack force receives a response to his frantic call to HQ: the Maximum Leader will be coming to inspect the damage personally!

Meanwhile, in space overhead, the telephone call is picked up by a U.S. ELINT satellite. After a few moments of real-time human analysis at the Pentagon, a command is sent to the Strike Satellite orbiting over the enemy country. As the command is received, the hafnium-powered gamma-ray laser satellite adjusts its optics to the next target — the enemy’s military headquarters — using data from a stealthy recon satellite to narrow its beam tareting coordinates precisely. The laser flashes out — and suddenly the Maximum Leader bursts into flame as he walks across the parade ground!

The result for the enemy is catastrophic. Faced with an attacker than can project invisible thunderbolts from out of a clear sky, the Maximum Leader’s forces‘ morale collapses. Then comes the telephone call from Washington: “The airplanes that are landing at the International Airport are American forces. You are to surrender to them at once. Any resistance to their authority will result in further attacks.” Helpless to resist an enemy that he cannot see, the commander of the enemy forces orders his men to stack arms and stand down. One by one the C-17s appear over the airfield...

The end. Another war is over before it has started, courtesy of the US Strategic Space Force...

18 posted on 10/19/2003 8:45:14 PM PDT by B-Chan (Catholic. Monarchist. Texan. Any questions?)
[ Post Reply | Private Reply | To 12 | View Replies]

To: DeweyCA
Yeah, no $hit!!
19 posted on 10/19/2003 8:46:41 PM PDT by Empireoftheatom48 (God bless our troops!! Our President and those who fight against the awful commie, liberal left!!)
[ Post Reply | Private Reply | To 16 | View Replies]

To: 11B3
Cooling becomes far less of a problem, and the input power is nearly infinite.

Actually, space isn't a very good thermal conductor, even though it's "cold". You need very large heatsinks up there to get rid of a lot of heat, and they themselves need to be shielded from the sun if you want them to be cold.

20 posted on 10/19/2003 8:47:30 PM PDT by coloradan (Hence, etc.)
[ Post Reply | Private Reply | To 3 | View Replies]


Navigation: use the links below to view more comments.
first 1-2021-4041-6061-68 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson