Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

On Plato, the Early Church, and Modern Science: An Eclectic Meditation
November 30, 2004 | Jean F. Drew

Posted on 11/30/2004 6:21:11 PM PST by betty boop

On Plato, the Early Church, and Modern Science: An Eclectic Meditation
By Jean F. Drew

God, purposing to make the universe most nearly like the every way perfect and fairest of intelligible beings, created one visible living being, containing within itself all living beings of the same natural order.

Thus does Plato (d. 347 B.C.) succinctly describe how all that exists is ultimately a single, living organism. At Timaeus20, he goes on to say:

“There exists: first, the unchanging form, uncreated and indestructible, admitting no modification and entering no combination … second, that which bears the same name as the form and resembles it … and third, space which is eternal and indestructible, which provides a position for everything that comes to be.”

And thus we find a description of the universe in which Being and Existence (Becoming) — the one God and the multiplicity of things — are bound together as a single living reality whose extension is mediated by Space (which for us moderns implies Time).

Our aim in this essay is to define these ideas and their relationships, and trace their historical development from the ancient world to the present. Taking a page from the late Eric Voegelin (1901–1985, philosopher of history specializing in the evolution of symbolization), we will follow a history-of-ideas approach to these issues. Along the way we will find that not only philosophy and cosmology, but also theology and even modern science can illuminate these seminal conceptions of Platonic thought. We must begin at the beginning, that is, with God — who is absolute Being in Plato’s speculation, of whom the cosmos itself is but the image (eikon) or reflection.

When Plato speaks of God (or when Aristotle does for that matter, as in e.g., Nicomachean Ethics), he is not referring to the Olympian gods, to Zeus, Hera, Athena, Poseidon, and the rest of the gang of “immortals.” For the Olympians are like man in that they are creatures of a creating God. Not only that, but they are a second generation of gods, the first having reigned in the antediluvian Age of Chronos; which is to say that the Olympians’ rule or law is not everlasting, but contingent. Thus they are not self-subsistent, but dependent (contingent) on a principle outside of themselves. We might say that the central difference between Plato’s God and the Olympians consists in the fact that the latter are “intracosmic” gods, and the former is “extracosmic,” that is, transcending all categories and conditions of space-time reality. In contrast, the intracosmic gods are subject to change, to contingency; and so, though they may truly be said to exist in some fashion, cannot be said to possess true Being. (More on these distinctions in a minute.)

It is clear that for Plato, God is the “Beyond” of the universe, or in other words, utterly transcendent, perfectly self-subsistent Being, the “uncaused cause” of all the multiplicity of existents in the universe. In yet other words we can say that, for Plato, the cosmos is a theophany, a manifestation or “presence” of the divine Idea — in Christian parlance, the Logos if I might draw that association — in the natural world.

As Wolfgang Smith notes, “Christian teaching is based upon the doctrine of the Logos, the Word of God, a term which in itself clearly suggests the idea of theophany. Moreover, what is implicit in the famous Prologue of St. John [“In the beginning was the Word, and the Word was with God, and the Word was God. The same was in the beginning with God. All things were made by him; and without him was not any thing made that was made. In him was life; and the life was the light of men. And the light shineth in darkness; and the darkness comprehended it not.” (John 1:1–5)] is openly affirmed by St. Paul when he declares that “the invisible things of Him from the creation of the world have been clearly seen, being understood by the things that are made, even His power and Godhead” (Rom. 1:20) … The indisputable fact is that at its deepest level Christianity perceives the cosmos as a self-revelation of God.” [Wolfgang Smith, Cosmos and Transcendence, 1984]

Being and Existence (Becoming)
Being is a concept so difficult that it comes close to eluding our grasp altogether. It is utterly beyond space and time; imperishable; entirely self-subsistent, needing nothing from outside itself in order to be complete; essential; immutable; and eternally perduring. Contrast this with the concept of existence, regarding which Plato asks “how can that which is never in the same state be anything?” And this is the clue to the profound difference between being and existence: The existing things of this world are mutable and transient.

We must in my opinion begin by distinguishing between that which always is and never becomes from that which is always becoming but never is. The one is apprehensible by intelligence with the aid of reasoning, being eternally the same, the other is the object of opinion and irrational sensation, coming to be and ceasing to be, but never fully real. In addition, everything that becomes or changes must do so owing to some cause; for nothing can come to be without a cause. [Timaeus, 3:28]

Smith writes of the existing or “becoming” things that

“… they come upon the scene, we know not from whence; they grow, change, and decay; and at last they disappear, to be seen no more. The physical cosmos itself, we are told, is a case in point: it, too, has made its appearance, perhaps some twenty billion years ago, and will eventually cease to exist [i.e., finally succumbing, we are told, to thermodynamic entropy or “heat death”]. What is more, even now, at this very moment, all things are passing away. ‘Dead is the man of yesterday,’ wrote Plutarch, ‘for he dies into the man of today: and the man of today is dying into the man of tomorrow.’ Indeed, ‘to be in time’ is a sure symptom of mortality. It is indicative, not of being, but of becoming, of ceaseless flux.”

All the multiplicity of existents in the universe are in a state of becoming and passing away. But Plato’s great insight is that all things in the state of becoming — that is, all existing things — are whatever they are because they are participations in Being. That is to say, “we perceive the trace of being in all that exists,” writes Smith, “and that is why we say, with reference to any particular thing, that it is.” Existence, in other words, is contingent on Being.

But we wonder: In what way is this possible? And if existents participate in being, what is that Being in which they participate?

In Exodus 3:14 Moses has experienced a theophany: While tending his flock on Mount Horeb, suddenly he hears the voice of God issuing from a burning bush: God is speaking to him! Reverentially, Moses inquires of God what is His name (meaning: what is His nature or character).

And God said unto Moses, I AM WHO AM: and He said, Thus shalt thou say unto the children of Israel, I AM hath sent me unto you.

God has told Moses: that He is Being (“I AM”). And the strong implication is that there is no “other” being: “I alone AM.” For “I” is plainly singular in form.

Smith draws the crucial point, “God alone IS. But how are we to understand this? ‘It seems to me,’ writes St. Gregory of Nyssa, ‘that at the time the great Moses was instructed in the theophany he came to know that none of those things which are apprehended by sense perception and contemplated by the understanding really subsist, but that the transcendent essence and cause of the universe, on which everything depends, alone subsists.’ But why? Does not the world exist? Are there not myriads of stars and galaxies and particles of dust, each existing in its own right? And yet we are told that the transcendent essence alone subsists. ‘For even if the understanding looks upon any other existing things,’ the great theologian goes on to say, ‘reason observes in absolutely none of them the self-sufficiency by which they could exist without participating in true Being. On the other hand, that which is always the same, neither increasing nor diminishing, immutable to all change whether to better or to worse (for it is far removed from the inferior and has no superior), standing in need of nothing else, alone desirable, participated in by all but not lessened by their participation — this is truly real Being.’”

Smith continues: “In the words of St. Gregory, ‘that which is always the same, neither increasing nor diminishing, immutable to all change … is truly real being.’ As concerns ‘existing things,’ on the other hand, the teaching implies that these entities are always changing, always in a state of flux, so that their very existence is in a way a process of becoming, in which however nothing is actually produced. This has been said time and again, beginning with Heraclitus and the Buddhist philosophers. And there can be little doubt that it is true: even modern physics, as we can see, points to the same conclusion. Only there is another side to the coin which is not always recognized. Existent things — the very flux itself — presuppose what Gregory and the Platonists have termed ‘a participation in Being.’ The point is that relative or contingent existences cannot stand alone. They have not an independent existence, a being of their own. ‘In Him we live, and move, and have our being,’ says St. Paul….”

St. Augustine confirms the Platonic insight this way:

I beheld these others beneath Thee, and saw that they neither altogether are, nor altogether are not. An existence they have, because they are from Thee; and yet no existence, because they are not what Thou art. For only that really is, that remains unchangeably.

Space
Space is the third essential term of the Platonic cosmology: It is the matrix in which living things and all other existents participate in Being. Plato’s creation myth — the Myth of the Demiurge in Timaeus — elucidates the Platonic conception of Space.

For Plato, the God of the Beyond is so “beyond” that, when it came time for creating the Cosmos, he didn’t even do it himself. He sent an agent: the Demiurge, a mythical being endued by God to be in divine likeness of God’s own perfect love, truth, beauty, justice, and goodness. The embodiment of divine perfections, the Demiurge wishes to create creatures just as good and beautiful as himself, according to the standard of the divine Idea — a direct analog, it seems to me, of the Logos theory of the ancient Church. Indeed, Eric Voegelin sees in the Demiurge the symbol of Incarnation [Order and History Vol. 3: Plato and Aristotle, 1957]:

“The Demiurge is the symbol of Incarnation, understood not as the result of the process but as the process itself, as the permanent tension in reality between the taxis of form or idea and the ataxia of formlessness.”

Similarly to the Christian account, the Demiurge in a certain way creates ex nihilo — that is, out of Nothing. At first glance, Plato is seen specifying, not a pre-existing “material” but a universal field of pure possibility called Chora, “Space.” Perhaps we may find in this concept a strong analogy to Isaac Newton’s concept of Absolute Space (see below).

Chora seems to indicate the idea of an eternal, universal field of pure stochastic potentiality that needs to become “activated” in order to bring actual beings into existence. In itself, it is No-thing, i.e., “nothing.” This “activation” the Demiurge may not effect by fiat: He does not, for instance, “command” to “Let there be Light!” The main tool at his disposal is Peitho, “persuasion.”

And if Chora is not so persuaded, it will remain in a state of “nothingness.” It will remain unformed, in the condition of ataxia. Of itself it is “Nothing”; by itself, it can do nothing. It cannot generate anything out of itself, not even matter in primaeval form.

And thus Plato introduces the figure of the Demiurge into his creation myth, symbolizing form or idea — the principle of (formative) taxia that draws (formless) ataxia into existence. We moderns might be tempted to describe the Demiurge as constituting an “information set” together with an “energy source,” who “persuades” the pure stochastic potentiality of formless, absolute, empty space into actualized form, and thus existence. From the cosmic standpoint, he makes unity out of multiplicity, in harmony and geometrical proportion:

“The best bond is the one that effects the closest unity between itself and the terms it is combining; and this is best done by a continued geometrical proportion.” [Timaeus, 4]

Thus the Demiurge is a kind of “divine geometer,” producing the forms (or mathematical ideas) that Chora can be persuaded to conform to, and thus come into existence.

But the Demiurge does more than just get things started: As bearer of the divine Idea — as pure love and beauty and goodness and truth — he continues always persuading Chora to generate creatures as like himself as possible (i.e., reflecting his own divine qualities at whatever generic stage), throughout all eternity. Thus creation is a continuous process in space-time. Moreover, it is the source and driver of evolution as a universal natural process.

Through the ongoing activity of the Demiurge, men and the world are constantly being informed and renewed by the divine Idea; and thus a unified cosmic whole, a “One Cosmos,” a universal order comes into being at the intersection of time and timelessness, of immanent and transcendent reality, in the medium of Space (and Time).

Compare the Platonic creation myth with the philosophy of Dionysius the [Pseudo-]Areopagite, said to be the Greek converted by St. Paul in Acts, 17:34. For Dionyius, the “names of God” — the divine qualities — are goodness, being, life, wisdom, power, and justice. Joseph Stiglmayr writes [Cath. Encycl. at the entry for Dionysius the Pseudo-Areopagite], that for Dionysius, God is

“… the One Being (to hen), transcending all quality and predication, all affirmation and negation, and all intellectual conception, [Who] by the very force of His love and goodness gives to beings outside Himself their countless gradations, unites them in the closest bonds (proodos), keeps each by His care and direction in its appointed sphere, and draws them again in an ascending order to Himself (epistrophe) … all created things [proceed] from God by the exuberance of being in the Godhead (to hyperpleres), its outpouring and overflowing … and as a flashing forth from the sun of the Deity. Exactly according to their physical nature created things absorb more or less the radiated light, which, however, grows weaker the farther it descends. As the mighty root sends forth a multitude of plants which it sustains and controls, so created things owe their origin and conservation to the All-Ruling Deity…. Patterned upon the original of Divine love, righteousness, and peace, is the harmony that pervades the universe…. All things tend to God, and in Him are merged and completed, just as the circle returns into itself, as the radii are joined at the centre, or as the numbers are contained in unity.”

The Platonic resonances seem unmistakeable in these lines. It appears that both Platonic speculation and the Logos doctrine of the ancient Church as articulated by Dionysius are in agreement that Creator must be “beyond” Creation in order to resonate with it — which resonance is what makes the universe to be alive — i.e., a living universe.

C. A. Dubrey points out [Cath. Encycl. at the entry “Teleology”], that the theology of St. Thomas Aquinas makes it clear that, “Intrinsic finality [we are to think of this as a blend or merger of efficient and final causes in the Aristotelian sense] consists in the fact that every being has within itself a natural tendency whereby its activity is directed towards the perfection of its own nature…. St. Thomas does not hesitate to speak of ‘natural appetite,’ ‘natural inclination,’ and even ‘intention of nature,’ [we moderns might be tempted to add ‘instinct’ to this list] to mean that every being has within itself a directive principle of activity. Accordingly, God does not direct creatures to their ends from outside, but through their own nature…. The Divine plan of creation is carried out by the various beings themselves acting in conformity with their nature.

When, however, this finality is called immanent, this expression must not be understood in a pantheistic sense, as if the intelligence which the world manifests were to be identified with the world itself, but in the sense that the immediate principle of finality is immanent in every being…. Thus the unconscious finality in the world leads to the conclusion that there must be an intelligent cause of the world.” [Emphasis added.]

Aquinas’ insight, and also Plato’s, evokes a reconsideration of Isaac Newton’s concept of Absolute Space. Possibly this may be understood in the following terms. First, Absolute Space is “empty” space. Second, it is not a property of God, but an effect of His Presence; i.e., we advert to theophany again. The question then arises, in what “where” or “when” does this theophany take place? Perhaps Newton’s answer would be: In the beginning, and continuously thereafter. Second, it has been suggested that Newton intends us to understand Absolute Space as the sensorium Dei: “God constitutes space and time through his eternity and omnipresence” [ existendo semper et ubique, durationem et spatium consitutit: Philosophiae Naturalis Principia Mathematica, 3d ed., 1726]. Wolfhart Pannenberg writes,

“Now there are a number of good reasons — suggested by both philosophical and scientific thought — to consider time and space as inseparable. Einstein’s field concept comprises space, time, and energy. It takes the form of a geometrical description, and this seems to amount to a spatialization of time. The totality of space, time, and energy or force are all properties of a cosmic field.

“Long before our own age a theological interpretation of this subject matter had been proposed, and it was Isaac Newton who offered this proposal. It too referred everything to space or, more precisely, to the correlation of force as in the case of a force like gravitation acting at a distance. Newton’s well-known conception of space as sensory of God (sensorium Dei) did not intend to ascribe to God an organ of sense perception, the like of which God does not need, according to Newton, because of divine omnipresence. Rather, Newton took space as the medium of God’s creative presence at the finite place of his creatures in creating them.” [Wolfhart Pannenberg, Toward a Theology of Nature, 1993]

Thus the infinite takes priority over every finite experience, including intellectual experience — a position decisively argued by Descartes, as Pannenberg avers, “in his thesis that the idea of God is a prior condition in the human mind for the possibility of any other idea, even that of the ego itself.”

* * * * * *

The Influence of Platonic Speculation on the Early History of the Church
D. Edmund Joaquin, an insightful and gracious Christian friend, writes, “We understand that the universe is created and sustained by the Word [the Logos], and not only that, but by the Word sounding. God sustains the universe consciously and actively. He has not gone away and left us. In fact, He reveals Himself to us, and His final revelation is in the person of Christ [the Logos]. Christ is not an abstract aspect of God, like wisdom. He is God. He is God incarnating in the world that He himself has made.”

Joaquin further observes that “[the Gospel of] John is written to the Greeks and put into words that they could understand.” It seems there’s a mystery buried in here somewhere. Consider: Socrates was the teacher of Plato, who was the teacher of Aristotle, who was the teacher of Alexander — and Alexander spread Greek culture throughout Eurasia, the Middle East, and the Indian subcontinent. Add to this the fact that the great evangelist, St. Paul, had some difficulty converting the Jews to the Christian faith; but he converted the Greeks in droves. Not only St. John, but also St. Paul speaks in terms the Greek mind could readily grasp, as when he says God is He “in Whom we live and move and have our being.” These historical connections do not appear to be accidental, coincidental, nor incidental to the spread of the early Christian Church.

According to The Catholic Encyclopedia, the Greeks strongly responded to Christianity for its moral beauty as well as its truth. A case in point is St. Justin Martyr. He was a man of Greek culture, born in Palestinian Syria about the year 100 A.D, who converted to the faith around 130 A.D. Justin became one of Christianity’s earliest and most powerful apologists, and ended up condemned by the Roman authority for refusing to sacrifice to the pagan gods, for which offense he was summarily executed by the Imperium, along with several other of his “refusnik” co-religionists. The official record of their martyrdom is extant:

“The Prefect Rusticus says: Approach and sacrifice, all of you, to the gods. Justin says: No one in his right mind gives up piety for impiety. The Prefect Rusticus says: If you do not obey, you will be tortured without mercy. Justin replies: That is our desire, to be tortured for Our Lord Jesus, and so to be saved, for that will give us salvation and firm confidence at the more terrible universal tribunal of Our Lord and Saviour. And all the martyrs said: Do as you wish; for we are Christians, and we do not sacrifice to idols. The Prefect Rusticus read the sentence: Those who do not wish to sacrifice to the gods and to obey the emperor will be scourged and beheaded according to the laws. The holy martyrs glorifying God betook themselves to the customary place, where they were beheaded and consummated their martyrdom confessing their Saviour.”

Jules Lebreton writes (at the entry for St. Justin Martyr in Cath. Encycl.) “Justin tries to trace a real bond between philosophy and Christianity: according to him, both one and the other have a part in the Logos, partially disseminated among men and wholly manifest in Jesus Christ.”

Yet for all their apparent similarities and resemblances in many respects, there is a profound difference between Platonic insight and the Christian one: and this pertains to the relations between God and man.

Both Plato and Justin proclaim the transcendent God. Yet for Plato, God is so “beyond” as to be almost impossible of human grasp. Yet Plato felt the “divine pulls” in his own nature. These Plato thought could be accounted for and articulated by an act of pure unaided intellect, that is by nous, in a state of intense contemplation.

Contrast this position with Justin Martyr’s, who insisted that human wisdom was impossible without the testimony of the Prophets (whom God himself had informed and instructed) and the action of the Holy Spirit. For Plato, man’s relations with God consist of operations of the mind. For Justin, they are operations of the heart, of the Spirit. For Justin, God is not a mental abstraction: He is real Personality with whom one can have direct personal relations, in the Spirit.

A later writer, John Scotus Eriugina (ninth century) elaborates the Justinian position, in the process noting that there is a “downward tendency” of the soul towards the conditions of animal existence, and that this has only one remedy: Divine grace, the free gift of the Holy Spirit. “By means of this heavenly gift,” writes William Turner [at the entry for Scotus in the Catholic Encyclopedia], “man is enabled to rise superior to the needs of the sensuous body, to place the demands of reason above those of bodily appetite, and from reason to ascend through contemplation to ideas, and thence by intuition to God Himself.”

The pull of animal nature is an idea we also find in Plato, and also the countervailing pull from the divine Beyond. Man lives in the metaxy, in the “in-between reality” constituted by the two. Man’s task is to resolve this tension, and establish the proper balance that expresses the highest and best development of his human nature. But man must do this entirely by himself by means of nous or reason. There is no spiritual help “extra” to the human psyche available to facilitate this process.

In contrast, as Lebreton points out, Justin Martyr

“…admits that the soul can naturally comprehend what God is, just as it understands that virtue is beautiful … but he denies that the soul without the assistance of the Holy Ghost [Spirit] can see God or contemplate him directly through ecstasy, as the Platonic philosophers contended. And yet this knowledge of God is necessary for us: ‘We cannot know God as we know music, arithmetic, or astronomy’; it is necessary for us to know God not with an abstract knowledge but as we know any person with whom we have relations. The problem which it seems impossible to solve is settled by revelation; God has spoken directly to the Prophets, who in their turn have made Him known to us…. It is the first time in Christian theology that we find so concise an explanation of the difference that separates Christian revelation from human speculation.” [Emphasis added]

* * * * * *

Natural Law, Contingency, and the Scientific Method
The Platonic model encourages us to recognize that the universe is zoon empsychon ennoun, a living creature endowed with soul and intelligence. The myth of the Demiurge describes the world process as a type of incarnation, a dynamic relation of absolute being and contingent becoming evolving in space and time in a manner expressing a perduring taxia–ataxia relation. The Cosmos itself — the totality of all existing things — like its constituents, for example man and even the stars, is an eikon of being-in-becoming, a reflection or image of the divine Idea. Time itself is but a “moving image of eternity.” The life of the cosmos is wholly dependent, contingent on the Idea from which it manifests.

It is a lawful, orderly universe, yet one in which new occurrences are always arising. These new events are coming from, as it were, a “sea of contingency” analogous to Plato’s conception of Space, that is Chora — the infinite field of unformed, pure potentiality.

The immediately foregoing ideas, of course, are not scientific ones strictly speaking. Still, there are elements here that perhaps science would do well to consider, in order to maintain the integrity of its own method. For one thing, it seems science itself, in its disclosure of the regularities of nature, seems to have an in-built tendency to overlook contingency. We may define an event as contingent if a description of it is neither self-evident nor necessary, “if it could have happened differently,” as Ted Peters puts it in his Preface to Pannenberg’s Towards a Theology of Nature.

C. A. Dubray writes [“Teleology,” Cath. Encycl.], “The fact that the world is governed by laws, far from giving any support to the mechanistic conception, is rather opposed to it. A law is not a cause, but the expression of the constant manner in which causes produce their effects.” In other words, natural laws are expressions of observable regularities that occur in the world of existent phenomena in ordinary space-time reality. Thus, the laws themselves have no force as “causes”: they are descriptions.

Yet the focus on regularity inevitably masks the particularity and contingency of unique events. As Ted Peters notes, it is here that “we run into a problem of focus in the scientific community, because virtually all the theoretical attention is given to the regularity of nature’s laws, while the contingency of natural events slips into the nearly invisible background.” Peters continues:

“What researchers concentrate on are the uniformities that can be expressed in timeless equations. A dictionary of equations describing these uniformities allegedly constitutes scientific knowledge…. A closer examination, however, reveals that the applicability of these equations to concrete cases of natural processes requires certain initial and marginal conditions, conditions that in every case are contingent. Only when contingent conditions permit can we expect a natural law to operate as expected.”

To the extent that the scientific method of inquiry is premised on an “If/Then” logical construction — which seems ever to be the case — the method itself is an exercise in contingency, yet nonetheless one in which “Determinacy gets thematized, whereas contingency gets ignored.” Arguably this is a serious bias having epistemological implications; for e.g., “if the laws of classical dynamics are in principle temporally reversible, the actual course of natural events from which those laws have been abstracted is not. The reality of nature is first and foremost a historical reality.”

Pannenberg suggests a corrective for this “bias,” acknowledging: “That modern science so easily lends itself to abuse cannot be prevented in principle. It is one of the risks involved in the abstract study of regularities that either are inherent in nature itself or can be imposed on natural processes [e.g., as in ideological, technical, or engineering solutions]. This risk cannot be met on the level of scientific description itself but must be met first on the level of philosophical reflection on the work of science. It is on this level that the abstract form of scientific description must be considered with special attention to what it is “abstracted from” and what is methodically disregarded in the abstract formulas of science.”

And so contingent conditions — i.e, initial and boundary conditions — must be restored to their proper place in our deliberations, for they “are required for any formula of natural law to be applied. They are contingent at least in that they cannot be derived from the particular formula of law under consideration.… The mathematical formula of a natural law may be valid without regard to time. The physical regularity that is described by such a formula is not independent of time and temporal sequence. But it is only that physical regularity which makes the mathematical formula a law of nature. This suggests that the laws of nature are not eternal or atemporal because the fields of their application, the regularities of natural processes, originate in the course of time. Thus it also becomes understandable that new patterns of regularity emerging in the sequence of time constitute a field of application for a new set of natural laws….”

We may recognize that the total process of natural events presents itself to observation as a mesh of contingency and regularities. It is the task of science to pursue thematically the aspect of regularity. But, asks Pannenberg, can science “ever succeed in bringing into view the entirety of nature as determined in all details by a number of laws that are in any case not infinitely complex? This would mean at the same time that a stage of research is conceivable from which nothing more could be discovered. Many natural scientists have had this nightmare because of the successes of their own research. Fortunately it probably is not a truthful dream.”

For, says Pannenberg, “laws always uncover what is necessary superimposed on what is contingent. Given the undeniable contingency of occurrences in natural events, can we recognize in their special character as occurrences … [that] regularity as their own element in such a way that the presence of regularity can be thought together with the contingency of occurrences, not only under abstraction from the contingency of occurrences?” [Emphasis added]

Which is why Pannenberg advocates an opening up of new viewpoints in scientific research, “not because physical hypotheses or insights can be derived from them but because they open up and enlarge the intellectual space on which the formation of physical hypotheses depends…. In physics also, horizons of questioning have to be opened up first of all in order that hypotheses that arise in them can be examined by experiment and classified theoretically.”

Perhaps we need a greater appreciation of the “fitness” of the scientific method to engage the truly great questions of life, which ever seem to involve the relations of law and contingency. Leibniz propounds two great questions of perennial interest to the human mind: (1) Why are things the way they are and not some other way? (2) Why does anything exist at all?

Such questions, scientists will readily tell you, are beyond the purview of the scientific method. But does that mean such questions have no force or meaning such that they should not be asked at all?

Perhaps the incapability of the scientific method to answer such questions owes to the fact that all the great physical laws are acknowledged to be time-reversible; but we know that existence in space and time is not a time-reversible process. As Pannenberg states, it is a historical process. We might even say it is an evolutionary process.

Which suggests an analogy that might enlighten these questions, sharpen their meanings, and suggest additional questions: an analogy to direct human experience. Pannenberg writes of human beings, who do seem to live in a “time-irreversible,” that is “historical” process:

“Human beings never live only in the now. Rather, they experience their present as heirs of the past and as its active change. They anticipate the future in fear, hope, and planning; and in the light of such anticipation of the future they return to their present and the heritage of their past. The fact that we know of historical continuity is at least also conditioned by this peculiarity of human experience with time. If there is a new event, then it modifies the context of our consciousness of time which is already found present. It throws light back on earlier occurrences which have become a part of our experience already. In the same way, ideas that occur to us throw light on our previous expectations and plans in justifying, fulfilling, modifying, or disappointing and thwarting them. Thus the contingent event always enters already into a context of experience or tradition…. The future, beginning in the present happenings, is thus the origin of the perspective in which the past occurrences are put by every new experience.”

Worldviews and Paradigm Shifts
It is perhaps a truism that we tend to find what we’re looking for by screening out any and all potential elements which do not fit the pattern of our expectation. Arguably, the scientific method may be said inherently to suffer exposure to potential danger from this side, as suggested in the above remarks. Indeed, Schröedinger’s theory of wavefunction seems to predict this. Consider these remarks from Stephen M. Barr [Modern Physics and Ancient Faith, 2003]:

“In quantum theory, as traditionally formulated, there are ‘systems’ and ‘observers.’ Or rather, in any particular case, there is the system and the observer. The observer makes measurements of the system. As long as the system is undisturbed by external influences (that is, as long as it is ‘isolated’), its wavefunction — which is to say its probability amplitudes — will evolve in time by the Schröedinger equation…. However, when a measurement is made of the system the observer must obtain a definite outcome. Suddenly, the probability for the outcome that is actually obtained is no longer what the mathematics said it was just before the measurement, but jumps to 100 percent. And the probabilities for all the alternative outcomes, the ones that did not occur, fall to 0 percent.”

Thus we might say that the “reality” we humans experience ever involves “a moving goal-post.” And as the mover of this goal-post, the human agent is most indispensably involved in this process.

Faced with such “indeterminacy” regarding the foundations of experience, it is not surprising that people usually have recourse to mediating worldviews, or organized frames of ideational reality that constitute the conceptual space in which active experience is engaged and accordingly analyzed and interpreted. Certainly Plato has offered such a model. And so has Nobel laureate Jacques Monod [in Chance and Necessity, 1971]:

“Chance alone is the source of every innovation, of all creation in the biosphere. Pure chance, absolutely free but blind, is at the very root of the stupendous edifice of evolution. The central concept of biology … is today the sole conceivable hypothesis, the only one compatible with observed and tested fact. All forms of life are the product of chance….”

Needless to say, these two models are polar opposite conceptualizations. Yet having received each on “good authority,” which do we choose?

Such are not idle considerations; for as James Hannam points out [“The Development of Scientific and Religious Ideas,” 2003], “grand theories … often suffer death by detail where it is found that up close the situation is too complicated for the theory to handle…. [Yet] in the end, after it has changed the course of the river of enquiry, the theory can end up as a mortlake cut off from the general flow….”

Hannam cites historian Thomas Kuhn, who documents an historical process he terms “paradigm shift,” describing a situation in which the findings of authoritative science move “out of science and into practically every other field of human endeavor.” Once a given, albeit partial or even defective theory becomes “dominant,” writes Hannam, “far from being thrown out, a falsified theory is enhanced to deal with new information until such time as it finally collapses under the weight of anomalous results. Then, after a chaotic period, a new theory emerges that can deal with the anomalies and normal service resumes…. A paradigm refers to but one field, say classical mechanics or health policy whereas the ideology/worldview is the general background that underpins all the paradigms.”

The worldview (or ideology, if you prefer), for better or worse, implicitly shapes the background knowledge of thinking agents to which new experiences constantly are being conformed. Hannam says that worldview “is often so deeply embedded in the psyche that it is very rarely considered explicitly except by specialists,” but that nonetheless, “the worldview is seen as [a] self-confirming fact of life and hence it is not strictly rational…. The existence of a dominant worldview does not mean that a particular individual is unable to think outside the box but rather that his ideas are unlikely to fall on fertile ground. Unless new ideas can be stated in a language that makes them comprehensible to his peers, his intention in writing will not be met.”

Which is the not-too-subtle way to put the fact that every man has a worldview, without exception, whether articulate or inarticulate; and that somehow, for the “intention of writing to be met” — that is, for accurate and meaningful (i.e., successful) communication of ideas to take place — some deeper, common ground of shared truth must first be accessed, for the purpose of providing a more capacious intellectual space in which the human pursuit of knowledge and wisdom might unfold or evolve from its present point of attainment.

But where today in our modern world is such a common ground or field to be found? Hannam proposes the examination of the history of ideas as a possibly useful method in the search for common ground. He writes,

“To examine the history of ideas the only fair way to proceed would seem to place before ourselves the evidence and authority that the historical agents had before them and assume they acted rationally on that basis. Otherwise, there is no hope of ever tracing intellectual development because ‘cause and effect’ assumes some sort of logical causality that is impossible with non-rational agents. The best that could be hoped for would be a catalog of mental positions, with no way to say how one led to another except by being pushed by blind exterior forces. This might be precisely what determinists are advocating but they would have to give up any hope of finding causes and restrict themselves to explanations.”

Perhaps we moderns would do well to reconsider the common assumption that people living before our own time were somehow inferior in knowledge, experience, and observational powers as compared with our own status as enlightened individuals. Arguably, the ancient world produced some of the most powerful thinkers in the history of mankind, formulating ideas that were, in the words of Hannam, “the fruits of unfettered metaphysical speculation that inevitably hits on the right answer occasionally.”

Democritus, for example, proposed a theory predicting the atom as the ultimate constituent of matter, more than two-thousand years before the technical means existed to isolate atoms experimentally or, as Hannam notes, any “useful applications for them” could be found. Then it was discovered that the atom itself is an ordered constellation of even finer parts. There seems to be an historical progression of ideas here, the new building up on a framework originally laid up in the past, modifying it, improving on it in light of new insights and technical capabilities.

Hannam gives another example of more recent vintage: “Copernicus needed Nicole Oresme’s solution as to why we do not feel the movement of the Earth even though in Oresme’s time it was just a curiosity as no one thought the Earth actually was moving … each new idea, once accepted, shifts the boundaries of the worldview and makes it possible for further new ideas to be accepted into the pale.”

We can extend the examples even further. Reimann constructed a geometry, apparently because his mind could grasp the logic and beauty it revealed for its own sake. But at the time, it had no apparent “external referent” in the field of nature. It was a beautiful and glorious abstraction — until Einstein came along, and picked it up “off the shelf” as it were, to become the very language of relativity theory.

Thus it might be said that the evolution or “progress” of science depends on successive enlargements of the conceptual space it requires to do its work. In other words, science inherently is a participation in the historicity of the world.

Whatever our personal worldview, perhaps it would be well to recall that science is an historical process. Perhaps this understanding could open up additional, needed conceptual space that science itself requires in order to advance.


TOPICS: Philosophy
KEYWORDS: aquinas; augustine; christianity; churchhistory; contingency; cosmology; epistemology; justinmartyr; metaphysics; newton; ontology; plato; quantumfieldtheory; relativitytheory; schroedinger; spacetime; theology
Navigation: use the links below to view more comments.
first previous 1-20 ... 841-860861-880881-900 ... 921-935 next last
To: js1138
I'm not convinced the human genome is the longest.

From this site here:

But among multicellular species, the size of the genome does not correlate well with the complexity of the organism. The human genome contains 3 billion base pairs of DNA, about the same amount as frogs and sharks. But other genomes are much larger. A newt genome has about 15 billion base pairs of DNA, and a lily genome has almost 100 billion.

861 posted on 01/18/2005 1:25:17 PM PST by PatrickHenry (<-- Click on my name. The List-O-Links for evolution threads is at my freeper homepage.)
[ Post Reply | Private Reply | To 859 | View Replies]

To: Doctor Stochastic; Alamo-Girl; marron; js1138; tortoise; StJacques; D Edmund Joaquin; ...
Evolution merely means change (of allele frequencies to be more specific.)

But doesn't Darwinist theory say that natural selection is what promotes the "survival (and thus reproduction) of the fittest?" At the very least, it would appear that survival (reproduction) is the "end," goal, or point of the exercise, the "good" toward which nature "strives." (I used quotation marks to indicate figurative language, so don't go hoopy on me). Or are you suggesting that what evolution really means is "change for the sake of change -- no good changes, no bad changes; just changes, randomly produced?"

Forgive me, Doc, but this strikes me as totally mindless.

862 posted on 01/18/2005 1:35:29 PM PST by betty boop
[ Post Reply | Private Reply | To 847 | View Replies]

To: Alamo-Girl

Again, I would have to argue that your interpretation of complexity is transactional. There is nothing inherently more complex about a human blueprint than that of a newt. It is the interaction between the blueprint and the supportive infrastructure that appears as complexity.

But the notion that tiny changes to the underlying blueprint can be read as profound differences in structure and complexity is an underlying assumption of Darwinian evolution.


863 posted on 01/18/2005 1:41:39 PM PST by js1138 (D*mn, I Missed!)
[ Post Reply | Private Reply | To 860 | View Replies]

To: betty boop
"Survival of the adequate" would be a better description.

Evolution is the change in allele frequency. "Good" or "bad" in an evolutionary context usually refer to having more or fewer descendants.
864 posted on 01/18/2005 1:49:42 PM PST by Doctor Stochastic (Vegetabilisch = chaotisch is der Charakter der Modernen. - Friedrich Schlegel)
[ Post Reply | Private Reply | To 862 | View Replies]

To: Doctor Stochastic
They would have been executed under Stalin whose regime was extremely anti-Darwin.

This is news to me, Doc. Got a cite?

Stalin executed two types of people: Kulaks and "intellectuals." Of the latter, one could be "in favor" one day, and "out of favor" the next. (The Kulak seems never to have been in favor....) Stalin resorted to a good purge every now and then -- terror being one of his tools of totalist control -- and I feel reasonably sure that whether someone was a Darwinist or not was not a selection criterion. Stalin was glad to execute victims of either persuasion. He executed Ervin Bauer in 1947 in a "routine" purge. Bauer was not a Darwinist (as far as i can tell).

As to whether Stalin was a "true Marxist," my impression is he served nothing -- no one and no idea -- except his own lust for power and the idea of his de facto "divinity."

865 posted on 01/18/2005 1:51:28 PM PST by betty boop
[ Post Reply | Private Reply | To 849 | View Replies]

To: betty boop
Forgive me, Doc, but this strikes me as totally mindless.

I assume this offends your aesthetic and moral sense. I'm not exactly sure what kind of argument this is. Is it more pleasing to contemplate all the suffering in the animal world to be the result of a deliberate act of design?

Mind could be visible at some scales and not noticed at other scales. That gets back to emergent properties. What seems random at the quantum scale becomes order and predictibility at the macro scale. We do not know if there is a scale at which natural selection might appear to be the workings of a mind. Underlying randomness noes not preclude emerging order.

866 posted on 01/18/2005 1:53:44 PM PST by js1138 (D*mn, I Missed!)
[ Post Reply | Private Reply | To 862 | View Replies]

To: betty boop

http://eserver.org/cyber/stalin.txt


867 posted on 01/18/2005 1:55:32 PM PST by js1138 (D*mn, I Missed!)
[ Post Reply | Private Reply | To 865 | View Replies]

To: betty boop

Check out the Affair Lysenko. This is well known among biologists. Of course, the removal of Darwin from the biology and thus agriculture fields did help the Soviets set a record for crop failures.


868 posted on 01/18/2005 1:56:32 PM PST by Doctor Stochastic (Vegetabilisch = chaotisch is der Charakter der Modernen. - Friedrich Schlegel)
[ Post Reply | Private Reply | To 865 | View Replies]

To: betty boop

http://www.haciendapub.com/article7.html


869 posted on 01/18/2005 1:59:10 PM PST by js1138 (D*mn, I Missed!)
[ Post Reply | Private Reply | To 865 | View Replies]

To: tortoise; Alamo-Girl; betty boop; PatrickHenry
I like your analogy, but isn't it strange, we always seem to have donkey carts mixed in with old Chevys, and Mazzeratis, let alone jets and beyond? Perhaps these are the transitionals that the evolutionists are seeking. Another problem too is that of the observer -- whereas one may perceive a "donkey cart", another, aware of other information in the cosmos, might well be in awe of a stealth fighter, which was mistaken for a donkey cart because the first observer had no idea of what he was seeing

As to consciousness, it's probably "outside the quantum" and can't be measured

870 posted on 01/18/2005 3:29:56 PM PST by D Edmund Joaquin (Mayor of Jesusland)
[ Post Reply | Private Reply | To 854 | View Replies]

To: js1138; Doctor Stochastic; Alamo-Girl; marron; cornelis; gobucks; PatrickHenry; D Edmund Joaquin; ..
I assume this offends your aesthetic and moral sense....

No, that's not the offense, js1138. When I said that Doc's argument struck me as mindless, I meant exactly that. I thought it was irrational.

Doc seems to suggest that the failure of Soviet agriculture was due to Stalin's poor choice of a scientist. I gather Doc thinks that if Stalin had just gone with Darwin instead of Lysenko, Soviet agriculture would have thrived. [Maybe Lysenko would have, too. But he alas was also purged by Stalin....]

Which is, of course, totally bogus on the historical record. Soviet agriculture failed because Stalin decided to destroy the Kulaks, a small-propertied class of farmers (rather like those imagined in Thomas Jefferson's reveries], titled to land by ancestral birthright, from whose produce the Russian people had historically been able to feed itself more or less. Certainly the Kulaks and their families and communities had a certain independence from the common trend.

So Stalin wiped them out by the scores of millions. And then collectivized their lands. Marxist Planning was to substitute for long perduring, deep human connections with the soil, its own theory of rational agricultural planning and production -- all of which made possible by the destruction of every human community within its sway, and a way of life and livelihood to boot.

But hey! these are merely the eggs one has to break to make an omelette, you know. [No wonder Soviet agriculture failed....]

To the best of my knowledge (such as it is), up to its last gasp, the USSR was a net importer of the most basic foodstuffs, such as wheat.

If Stalin wanted a scientist to help him with such tedious business as feeding his people, then I don't see where Darwin would have been of much help. Stalin would have done better to (a) leave the Kulaks alone; and (b) check out the hybridization work first conducted by Mendel. But he was no "intellectual"; and I digress.

Had the Levises, Lewontins, and Chomsky's of our world lived during the Stalin era, I feel reasonably certain that they would sooner or later have been "purged," each and all of them. And any other suchlike ingrates.

js1138, I really liked this:

Underlying randomness noes not preclude emerging order.

To me it seems the single most fascinating prospect of science as it emerges today is the reconciliation of the perspectives of the microworld of quantum theory, the macroworld of Newtonian mechanics, and their common context in Einsteinian relativity theory and beyond.

And I also really liked this:

We do not know if there is a scale at which natural selection might appear to be the workings of a mind.

No, we don't. But that's what we're looking for.

871 posted on 01/18/2005 7:20:25 PM PST by betty boop
[ Post Reply | Private Reply | To 866 | View Replies]

To: StJacques; PatrickHenry; Alamo-Girl; cornelis; betty boop
"Now; to the charge that "there is no evidence for Macroevolution." Bull! This falls under the rubric of ignoring contradictory evidence. I'll post an excerpt from the U-Cal San Diego link I cited earlier. I quote as follows:" [snip]

"Evidence"???? Sheeeesh!!

February 10, 2002

Biologists are ecstatic. In "Genetic Archeology Uncovers Early Animal Evolution," biologists claim they “have uncovered the first genetic evidence that explains how large-scale alterations to body plans were accomplished during the early evolution of animals.”

Have they?

Making genetic modifications between fruit flies and brine shrimp, they found this “suppresses 100 percent of the limb development in the thoracic region of fruit flies, but only 15 percent in Artemia­would have allowed the crustacean-like ancestors of Artemia, with limbs on every segment, to lose their hind legs and diverge 400 million years ago into the six-legged insects.”

Because of this, macroevolution, overnight, has been solved, with one set of experiments!

The study seems to be aimed at “creationists” as this statement details:

“Creationists have argued that any big jump would result in a dead animal that wouldn't be able to perpetuate itself. And until now, no one's been able to demonstrate how you could do that at the genetic level with specific instructions in the genome."

Have they found the “big jump” or have they focused so narrowly on one part, that they hope non-thinking people will give up and go home?

How does changing legs equal the complete biochemical change between species?

How do they conclude these changes actually took place, outside their intelligently designed experimentation other than they may have?

How long would such a species survive with a defect of missing legs?

It seems the miracles of naturalists only happen under carefully controlled experimentation.

The article goes on to say the finds may contribute to “understanding human disease and genetic deformities.”

Ah, so genetic changes generally aren’t beneficial to an animal or human after all?

As usual, the obvious (i.e. reason, etc.) is left out of naturalistic “science.” ~ Darrick Dean @ Science Watch

872 posted on 01/18/2005 8:16:42 PM PST by Matchett-PI (Today's DemocRATS are either religious moral relativists, libertines or anarchists.)
[ Post Reply | Private Reply | To 482 | View Replies]

To: StJacques; PatrickHenry; Alamo-Girl; cornelis; betty boop
"There is no "religious" attachment to the Theory of Evolution and "Darwinianism" only exists in the minds of creationists."

Some define faith as "belief that isn't based on evidence". Dawkins calls it the "principal vice of any religion"

[ Biblical] Christians realize that this definition of faith is a caricature. Instead of viewing faith as belief that is not based upon evidence, we view faith as that which is a pre-condition for gaining any other knowledge; faith itself is not irrational or unscientific, but that which must be in order to gain other knowledge through science and logic.

For instance, confidence in the law of non-contradiction could be said to be faith.

There is no direct way to prove the law of contradiction except that it must be presupposed in order to learn anything or differentiate anything from anything else.

Likewise, the principle of induction, which states that the future will be generally like the past, is what makes possible the formulation of scientific laws and theories.

We cannot test the truth of this principle scientifically, for we would be assuming the truth of induction to try and prove it.

We cannot test the truth of the principle logically, for logic has as its subject matter static propositions.

Thus, induction and the law of contradiction, two of the bedrocks upon which all the rest of Richard Dawkins' knowledge is based, are both things he must accept on faith. ~ Jonathan Barlow

873 posted on 01/18/2005 8:37:13 PM PST by Matchett-PI (Today's DemocRATS are either religious moral relativists, libertines or anarchists.)
[ Post Reply | Private Reply | To 482 | View Replies]

To: StJacques; PatrickHenry; Alamo-Girl; cornelis; betty boop
"... it could be stated that the Catholic Church [put forth] no argument that God intervened in the material sense to create man, the intervention was a spiritual one."

Not so.

"....... Pope John Paul II, in a General Audience on 24 January 1986, addressed the issue and said that "The theory of natural evolution, understood in a sense that DOES NOT EXCLUDE divine causality, is not in principle opposed to the truth about the creation of the visible world, as presented in the Book of Genesis."

Conflicts between the truths of science and the truths of faith, in other words, are only apparent, never real, for both science and faith, the natural world accessible to reason, and the "world" of revelation accessible to faith, have the same author: God.

..Being all powerful, and having created EVERYTHING out of nothing...."

HERE

874 posted on 01/18/2005 9:07:44 PM PST by Matchett-PI (Today's DemocRATS are either religious moral relativists, libertines or anarchists.)
[ Post Reply | Private Reply | To 482 | View Replies]

To: js1138; betty boop; Doctor Stochastic; tortoise; Physicist; PatrickHenry; cornelis; marron; ...
Thank you for your reply, js1138. Again, I would have to argue that your interpretation of complexity is transactional. There is nothing inherently more complex about a human blueprint than that of a newt. It is the interaction between the blueprint and the supportive infrastructure that appears as complexity. But the notion that tiny changes to the underlying blueprint can be read as profound differences in structure and complexity is an underlying assumption of Darwinian evolution,

I do not define complexity in terms of a "transaction". Nor am I valuing the complexities or interpreting them beyond their definitions as described. But, by all means, see for yourself:

Here are the two basic types of complexity:

NECSI: Complex Systems

Complexity is ...[the abstract notion of complexity has been captured in many different ways. Most, if not all of these, are related to each other and they fall into two classes of definitions]:

1) ...the (minimal) length of a description of the system.

2) ...the (minimal) amount of time it takes to create the system.

The length of a description is measured in units of information. The former definition is closely related to Shannon information theory and algorithmic complexity, and the latter is related to computational complexity.

And here are the type of complexity I mentioned, their definitions and categories in which they seem to fit, to me:

Least Description

NIST: Kolmogorov Complexity

Definition: The minimum number of bits into which a string can be compressed without losing information. This is defined with respect to a fixed, but universal decompression scheme, given by a universal Turing machine.

Wikipedia: Cellular Automata (aka Self-Organizing Complexity)

A cellular automaton (plural: cellular automata) is a discrete model studied in computability theory and mathematics. It consists of an infinite, regular grid of cells, each in one of a finite number of states. The grid can be in any finite number of dimensions. Time is also discrete, and the state of a cell at time t is a function of the state of a finite number of cells called the neighborhood at time t-1. These neighbors are a selection of cells relative to some specified, and does not change (Though the cell itself may be in its neighborhood, it is not usually considered a neighbor). Every cell has the same rule for updating, based on the values in this neighbourhood. Each time the rules are applied to the whole grid a new generation is produced.

Adami: Physical Complexity

In this paper, we skirt the issue of structural and functional complexity by examining genomic complexity. It is tempting to believe that genomic complexity is mirrored in functional complexity and vice versa. Such an hypothesis, however, hinges upon both the aforementioned ambiguous definition of complexity and the obvious difficulty of matching genes with function. Several developments allow us to bring a new perspective to this old problem. On the one hand, genomic complexity can be defined in a consistent information-theoretic manner [the "physical" complexity (4)], which appears to encompass intuitive notions of complexity used in the analysis of genomic structure and organization (5). On the other hand, it has been shown that evolution can be observed in an artificial medium (6, 7), providing a unique glimpse at universal aspects of the evolutionary process in a computational world. In this system, the symbolic sequences subject to evolution are computer programs that have the ability to self-replicate via the execution of their own code. In this respect, they are computational analogs of catalytically active RNA sequences that serve as the templates of their own reproduction. In populations of such sequences that adapt to their world (inside of a computer's memory), noisy self-replication coupled with finite resources and an information-rich environment leads to a growth in sequence length as the digital organisms incorporate more and more information about their environment into their genome. Evolution in an information-poor landscape, on the contrary, leads to selection for replication only, and a shrinking genome size as in the experiments of Spiegelman and colleagues (8). These populations allow us to observe the growth of physical complexity explicitly, and also to distinguish distinct evolutionary pressures acting on the genome and analyze them in a mathematical framework.

If an organism's complexity is a reflection of the physical complexity of its genome (as we assume here), the latter is of prime importance in evolutionary theory. Physical complexity, roughly speaking, reflects the number of base pairs in a sequence that are functional. As is well known, equating genomic complexity with genome length in base pairs gives rise to a conundrum (known as the C-value paradox) because large variations in genomic complexity (in particular in eukaryotes) seem to bear little relation to the differences in organismic complexity (9). The C-value paradox is partly resolved by recognizing that not all of DNA is functional: that there is a neutral fraction that can vary from species to species. If we were able to monitor the non-neutral fraction, it is likely that a significant increase in this fraction could be observed throughout at least the early course of evolution. For the later period, in particular the later Phanerozoic Era, it is unlikely that the growth in complexity of genomes is due solely to innovations in which genes with novel functions arise de novo. Indeed, most of the enzyme activity classes in mammals, for example, are already present in prokaryotes (10). Rather, gene duplication events leading to repetitive DNA and subsequent diversification (11) as well as the evolution of gene regulation patterns appears to be a more likely scenario for this stage. Still, we believe that the Maxwell Demon mechanism described below is at work during all phases of evolution and provides the driving force toward ever increasing complexity in the natural world.

Least Time

NECSI: Functional Complexity

Given a system whose function we want to specify, for which the environmental (input) variables have a complexity of C(e), and the actions of the system have a complexity of C(a), then the complexity of specification of the function of the system is:

C(f)=C(a) 2 C(e)

Where complexity is defined as the logarithm (base 2) of the number of possibilities or, equivalently, the length of a description in bits. The proof follows from recognizing that a complete specification of the function is given by a table whose rows are the actions (C(a) bits) for each possible input, of which there are 2 C(e). Since no restriction has been assumed on the actions, all actions are possible and this is the minimal length description of the function. Note that this theorem applies to the complexity of description as defined by the observer, so that each of the quantities can be defined by the desires of the observer for descriptive accuracy. This theorem is known in the study of Boolean functions (binary functions of binary variables) but is not widely understood as a basic theorem in complex systems[15]. The implications of this theorem are widespread and significant to science and engineering.

Wikipedia: Irreducible Complexity

The term "irreducible complexity" is defined by Behe as:

"a single system which is composed of several interacting parts that contribute to the basic function, and where the removal of any one of the parts causes the system to effectively cease functioning" (Michael Behe, Molecular Machines: Experimental Support for the Design Inference)

Believers in the intelligent design theory use this term to refer to biological systems and organs that could not have come about by a series of small changes. For such mechanisms or organs, anything less than their complete form would not work at all, or would in fact be a detriment to the organism, and would therefore never survive the process of natural selection. Proponents of intelligent design argue that while some complex systems and organs can be explained by evolution, organs and biological features which are irreducibly complex cannot be explained by current models, and that an intelligent designer must thus have created or guided life.

Specified Complexity

In his recent book The Fifth Miracle, Paul Davies suggests that any laws capable of explaining the origin of life must be radically different from scientific laws known to date. The problem, as he sees it, with currently known scientific laws, like the laws of chemistry and physics, is that they are not up to explaining the key feature of life that needs to be explained. That feature is specified complexity. Life is both complex and specified. The basic intuition here is straightforward. A single letter of the alphabet is specified without being complex (i.e., it conforms to an independently given pattern but is simple). A long sequence of random letters is complex without being specified (i.e., it requires a complicated instruction-set to characterize but conforms to no independently given pattern). A Shakespearean sonnet is both complex and specified...

How does the scientific community explain specified complexity? Usually via an evolutionary algorithm. By an evolutionary algorithm I mean any algorithm that generates contingency via some chance process and then sifts the so-generated contingency via some law-like process. The Darwinian mutation-selection mechanism, neural nets, and genetic algorithms all fall within this broad definition of evolutionary algorithms. Now the problem with invoking evolutionary algorithms to explain specified complexity at the origin of life is absence of any identifiable evolutionary algorithm that might account for it. Once life has started and self-replication has begun, the Darwinian mechanism is usually invoked to explain the specified complexity of living things.

But what is the relevant evolutionary algorithm that drives chemical evolution? No convincing answer has been given to date. To be sure, one can hope that an evolutionary algorithm that generates specified complexity at the origin of life exists and remains to be discovered. Manfred Eigen, for instance, writes, "Our task is to find an algorithm, a natural law that leads to the origin of information," where by "information" I understand him to mean specified complexity. But if some evolutionary algorithm can be found to account for the origin of life, it would not be a radically new law in Davies's sense. Rather, it would be a special case of a known process.

Principia Cybernetica: Metatransition (a kind of punctuated equilibrium)

Consider a system S of any kind. Suppose that there is a way to make some number of copies from it, possibly with variations. Suppose that these systems are united into a new system S' which has the systems of the S type as its subsystems, and includes also an additional mechanism which controls the behavior and production of the S-subsystems. Then we call S' a metasystem with respect to S, and the creation of S' a metasystem transition. As a result of consecutive metasystem transitions a multilevel structure of control arises, which allows complicated forms of behavior.


875 posted on 01/18/2005 9:31:44 PM PST by Alamo-Girl
[ Post Reply | Private Reply | To 863 | View Replies]

To: D Edmund Joaquin
Another problem too is that of the observer -- whereas one may perceive a "donkey cart", another, aware of other information in the cosmos, might well be in awe of a stealth fighter, which was mistaken for a donkey cart because the first observer had no idea of what he was seeing.

Indeed. Great catch. Thanks for the post!

876 posted on 01/18/2005 9:36:35 PM PST by Alamo-Girl
[ Post Reply | Private Reply | To 870 | View Replies]

To: betty boop

Note that Stalin (and Lenin before him) could have used either Witte's or Stolypin's reforms. Either would have produced enough food to avoid the starvation of Kulaks. See Crankshaw's "Shadow of the Winter Palace" for some history.


877 posted on 01/18/2005 9:38:20 PM PST by Doctor Stochastic (Vegetabilisch = chaotisch is der Charakter der Modernen. - Friedrich Schlegel)
[ Post Reply | Private Reply | To 871 | View Replies]

To: Alamo-Girl
I always thought a good short story could be written about Einstein's wife. Everybody is in awe of his genius and she sits there puzzled, thinking this guy? lol, We can call it, Everybody loves Albert
878 posted on 01/18/2005 9:48:07 PM PST by D Edmund Joaquin (Mayor of Jesusland)
[ Post Reply | Private Reply | To 876 | View Replies]

To: betty boop; js1138; Doctor Stochastic; PatrickHenry; tortoise; Physicist; marron; cornelis; ...
Thank you so much for including me in your discussion on the assertion that evolution merely means change, i.e. that "higher" or "lower" are purely subjective terms not biology.

I can believe that biologists - and particularly evolutionary biologists – didn’t much care about complexity (please refer to the definitions at post 875.)

But mathematicians care a great deal about such things. Evolution makes no sense unless the observed complexity of living organisms can be explained.

As Marcel-Paul Schützenberger described, the biologists themselves opened the door to potentially fatal scrutiny of the theory when they invited the mathematicians to the table.

Interview with Schützenberger

The participation of mathemeticians in the overall assessment of evolutionary thought has been encouraged by the biologists themselves, if only because they presented such an irresistible target. Richard Dawkins, for example, has been fatally attracted to arguments that would appear to hinge on concepts drawn from mathematics and from the computer sciences, the technical stuff imposed on innocent readers with all of his comic authority. Mathematicians are, in any case, epistemological zealots. It is normal for them to bring their critical scruples to the foundations of other disciplines. And finally, it is worth observing that the great turbid wave of cybernetics has carried mathematicians from their normal mid-ocean haunts to the far shores of evolutionary biology. There up ahead, Rene Thom and Ilya Prigogine may be observed paddling sedately toward dry land, members of the Santa Fe Institute thrashing in their wake. Stuart Kauffman is among them. An interesting case, a physician half in love with mathematical logic, burdened now and forever by having received a Papal Kiss from Murray Gell-Mann. This ecumenical movement has endeavored to apply the concepts of mathematics to the fundamental problems of evolution -- the interpretation of functional complexity, for example.

Again, I assert that to deny there is a "higher" or "lower" structure of natural living organisms over time is to deny complexity altogether and casts evolutionary biology as a laughable ideology under color of science.


879 posted on 01/18/2005 9:55:30 PM PST by Alamo-Girl
[ Post Reply | Private Reply | To 871 | View Replies]

To: D Edmund Joaquin
LOLOLOL! I'd love to read it, too!
880 posted on 01/18/2005 9:56:20 PM PST by Alamo-Girl
[ Post Reply | Private Reply | To 878 | View Replies]


Navigation: use the links below to view more comments.
first previous 1-20 ... 841-860861-880881-900 ... 921-935 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson