Free Republic
Browse · Search
General/Chat
Topics · Post Article

Skip to comments.

Newly Discovered Star Has an Almost Pure Oxygen Atmosphere
Popular Mechanics ^ | 3/31/16 | William Herkewitz

Posted on 03/31/2016 4:35:11 PM PDT by LibWhacker

But good luck breathing in the bone-crushing gravity.

A newly discovered star is unlike any ever found. With an outermost layer of 99.9 percent pure oxygen, its atmosphere is the most oxygen-rich in the known universe. Heck, it makes Earth's meager 21 percent look downright suffocating.

The strange stellar oddity is a radically new type of white dwarf star, and was discovered by a team of Brazilian astronomers led by Kepler de Souza Oliveira at the Federal University of Rio Grande do Sul in Brazil. The star is unique in the known pool of 32,000 white dwarf stars, and is the only known star of any kind with an almost pure oxygen atmosphere. The new white dwarf has a mouthful of a name—SDSSJ124043.01+671034.68—but has been nicknamed 'Dox' (pronounced Dee-Awks) by Kepler's team. The discovery was reported today in a paper in the journal Science.

"This white dwarf was incredibly unexpected," says Kepler, "And because we had no idea anything like it could even exist, that made it all the more difficult to find."

Missing Gas

Here's a quick refresher: White dwarfs like Dox are the antiques of the cosmos. They're the hyper-dense husks left over when stars largely sputter out of hydrogen and helium fuel. All but the largest 3 percent of stars end up as white dwarfs. Although Dox is only slightly bigger than our home planet, it's 60 percent the mass of our sun.

Boris Gänsicke, an astronomer at the University of Warwick, in the UK, who was not involved in Dox's discovery, confirms that the "exotic white dwarf... has an almost pure oxygen atmosphere, diluted only by traces of neon, magnesium, and silicon," he writes in an essay accompanying the Science paper. "This chemical composition is unique among known [white dwarfs] and must arise from an extremely rare process."

So, what makes Dox's oxygen rich atmosphere so unexpected? Kepler explains that Dox presents more than a couple mysteries. For one, almost all other white dwarfs in the sky have an atmosphere thick with light elements like hydrogen and helium. These light elements are the final dregs of the star's elemental fusion fuel that survived the star's earlier life-cycle. Simply because of their weight, these light elements naturally float to the top of white dwarfs.

"What happened to all these light elements?" asks Kepler "How did they all get stripped away?"

Kepler also explains that although traces of heavier elements like carbon and oxygen can be detected in about one out of every five white dwarfs, it's never quite like this. A white dwarf's atmosphere is never purely one element, and is often diluted in a pool of lighter elements. Perhaps most perplexing, when oxygen atoms are found, they're spied in far heavier white dwarfs. Smaller white dwarfs evolve from smaller stars, which don't fuse together atoms into oxygen as they collapse. By all calculations, Dox would have had to be roughly double its weight to have even forged oxygen atoms in its earlier life. "You have to wonder where this oxygen even came from," says Kepler.

In short, by simply being so weird, Dox completely defies our general, scientific understanding of how stars evolve and eventually form into white dwarfs. But Kepler suggests that maybe this shouldn't be all that surprising. That's because, he argues, scientists have often ignored the wacky results that can come about when stars grow and evolve while locked in a binary dance with other stars—rather than alone.

"I think the main problem is that we [astronomers] have dedicated the last 50 years to calculate the evolution of stars that are not interacting with each other, when at least 30 percent of stars interact with a binary companion," he says.

Kepler believes Dox looks so strange because of an unlikely binary origin-story. His rough theory goes like this:

At some point Dox may have been a larger white dwarf, locked in a twirling ballet with another star much like our own Sun. These two stars were about the same distance apart as the Sun and Venus are. As Dox's dance partner started to sputter out of Hydrogen fuel, it formed what's called a red giant. It expanded rapidly—becoming so big that it actually engulfed the white dwarf in its outermost layer of gas. Kepler believes Dox would have started siphoning off the red giant's gas onto itself. At some point during that siphoning process, "when it reached a few million degrees, it exploded. That explosion threw all types of matter out. That's when [Dox] might have lost all its hydrogen and helium. This type of situation is known to have happened with other stars, although it's never been seen to leave just oxygen," he says.

The World's Most Boring Job

Dox was discovered in a data mountain of 4.5 million individual star observations, collected over the last 15 years by a New Mexico observatory in a project called the Sloan Digital Sky Survey. It was found by way of a process so grueling that its initial discoverer—one of Kepler's undergraduate students Gustavo Ourique—deserves a mention.

Ourique was looking for strange, new types of white dwarfs in a data pile of 300,000 possible observations. These observations are simple graphs about what colors of light came from each pinpoint source (called a spectral graph). Because a computer isn't easily programmed with such a vague task as "find something weird and cool," Ourique was challenged with the grunt-work task of physically looking at printed out pages of all 300,000 graphs.

"After a few months he could filter a one or two thousand each day, like reading a book" says Kepler. Yeah, but what a heartbreakingly boring book. That is, at least until it gets thrilling, because after half a year of scanning, and toward the end of the 300,000 graphs, Ourique came across Dox. Because of it's oxygen atmosphere, Dox's spectral graph looked truly unique, and he brought it to Kepler.

Ourique, man, you are a hero.


TOPICS: Astronomy; Science
KEYWORDS: atmosphere; oxygen; pure; star
Navigation: use the links below to view more comments.
first 1-2021-32 next last

1 posted on 03/31/2016 4:35:12 PM PDT by LibWhacker
[ Post Reply | Private Reply | View Replies]

To: LibWhacker

Oxygen would combust, yes?


2 posted on 03/31/2016 4:36:41 PM PDT by BenLurkin (The above is not a statement of fact. It is either satire or opinion. Or both.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker
But good luck breathing in the bone-crushing gravity.

Like we need a pure oxygen atmosphere. Our own atmosphere is only 21% Oxygen.

3 posted on 03/31/2016 4:38:32 PM PDT by fhayek
[ Post Reply | Private Reply | To 1 | View Replies]

To: BenLurkin

Oxygen itself does not combust.


4 posted on 03/31/2016 4:39:09 PM PDT by Lurker (Violence is rarely the answer. But when it is it is the only answer.)
[ Post Reply | Private Reply | To 2 | View Replies]

To: BenLurkin

Only if you have fuel to burn. At those levels, not much to burn.


5 posted on 03/31/2016 4:40:11 PM PDT by kosciusko51
[ Post Reply | Private Reply | To 2 | View Replies]

To: BenLurkin

No, oxygen is not flammable on its own. Combustion requires fuel; pure oxygen = no fuel.


6 posted on 03/31/2016 4:41:56 PM PDT by Islander7 (There is no septic system so vile, so filthy, the left won't drink from to further their agenda)
[ Post Reply | Private Reply | To 2 | View Replies]

To: BenLurkin

“With an outermost layer of 99.9 percent pure oxygen,” I guess there is little to combust with. Perhaps some of the remaining .1% may have already combined with oxygen.


7 posted on 03/31/2016 4:42:27 PM PDT by ChessExpert (The unemployment rate was 4.5% when Democrats took Congress in 2006.)
[ Post Reply | Private Reply | To 2 | View Replies]

To: LibWhacker

I bet anything ferrous has a hard time there, rust planet!


8 posted on 03/31/2016 4:45:34 PM PDT by Daniel Ramsey (You don't have to like Trump, his enemies certainly don't.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker
Its slowly cooling surface would still be about 21,000C and its gravity would be about 100,000 times more intense than on Earth — the equivalent of walking around while carrying 40 blue whales, he said.

Concentrated oxygen under this pressure would be poisonous, he added.

9 posted on 03/31/2016 4:47:47 PM PDT by disndat
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker

Space Ball 1 and President Skroob are on the way.


10 posted on 03/31/2016 4:49:03 PM PDT by TimF
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker

A planet named, NoF’inSmokin’


11 posted on 03/31/2016 4:49:07 PM PDT by StAntKnee (Add your own danged sarc tag)
[ Post Reply | Private Reply | To 1 | View Replies]

To: BenLurkin

Oxygen is needed for combustion, but so is fuel, which may not be available.


12 posted on 03/31/2016 4:50:11 PM PDT by Yashcheritsiy (You can't have a constitution without a country to go with it)
[ Post Reply | Private Reply | To 2 | View Replies]

To: BenLurkin

Gubmint scientists nothing thinking through.


13 posted on 03/31/2016 4:51:08 PM PDT by sagar (3 way race; cranky populist - Trump/Sanders, establishment - Hillary/Roobio, conservative - Cruz!)
[ Post Reply | Private Reply | To 2 | View Replies]

To: LibWhacker
But good luck breathing in the bone-crushing gravity.

A newly discovered star is unlike any ever found. With an outermost layer of 99.9 percent pure oxygen, its atmosphere is the most oxygen-rich in the known universe. Heck, it makes Earth's meager 21 percent look downright suffocating.

It'd be way too hot for us to try breathing it anywise.

14 posted on 03/31/2016 4:51:08 PM PDT by Yashcheritsiy (You can't have a constitution without a country to go with it)
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker

< buzzkill > What good is any of this astro physics research? What’s the purpose?< /buzzkill >


15 posted on 03/31/2016 4:54:37 PM PDT by central_va (I won't be reconstructed and I do not give a damn.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: BenLurkin

At the temperatures of the star, oxygen compounds couldn’t remain together. They would shake back apart into their original atoms.

Maybe a star like this is how the Lord forged the atoms of oxygen for the earth.


16 posted on 03/31/2016 4:56:21 PM PDT by HiTech RedNeck (Embrace the Lion of Judah and He will roar for you and teach you to roar too. See my page.)
[ Post Reply | Private Reply | To 2 | View Replies]

To: BenLurkin

“Decompose” is the word I’m looking for.

At ordinary temperatures oxygen + fuel => oxide + heat

At the elevated temperatures of the star, it would go in the other direction.


17 posted on 03/31/2016 4:58:57 PM PDT by HiTech RedNeck (Embrace the Lion of Judah and He will roar for you and teach you to roar too. See my page.)
[ Post Reply | Private Reply | To 2 | View Replies]

To: LibWhacker

This is a massive white dwarf if it has that high oxygen. Down to the core is probably a lot more silicon. However it is not massive enough to burn silicon (a rather violent reaction, producing iron.
The mass of this core remnant must be awful close to the Chandrasekhar limit. Past the limit, it would collapse into a black hole.


18 posted on 03/31/2016 5:07:59 PM PDT by Fred Hayek (The Democratic Party is now the operational arm of the CPUSA)
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker

32,000 white dwarfs? This is a stellar graveyard.


19 posted on 03/31/2016 5:10:00 PM PDT by Fred Hayek (The Democratic Party is now the operational arm of the CPUSA)
[ Post Reply | Private Reply | To 1 | View Replies]

To: BenLurkin

O2 needs fuel for a chemical reaction. There may be a way to use nuclear fusion and other particle tricks, but I’m not standing near it for the test run.


20 posted on 03/31/2016 5:10:36 PM PDT by soycd
[ Post Reply | Private Reply | To 2 | View Replies]


Navigation: use the links below to view more comments.
first 1-2021-32 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
General/Chat
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson