Free Republic
Browse · Search
General/Chat
Topics · Post Article

Skip to comments.

Physicists Cast Doubt on Neutrino Theory - Exotic Subatomic Particle May Not Exist at All
SciTech Daily ^ | August 13, 2020 | University of Cincinnati

Posted on 08/22/2020 1:57:04 PM PDT by SunkenCiv

click here to read article


Navigation: use the links below to view more comments.
first previous 1-2021-4041-6061-8081-88 next last
To: ClearCase_guy

21 posted on 08/22/2020 2:42:21 PM PDT by Bratch (If liberty means anything at all, it means the right to tell people what they do not want to hear.)
[ Post Reply | Private Reply | To 4 | View Replies]

To: SunkenCiv

I figure in the beginning a huge amount of neutrinos were created. As the universe expanded it slowed them down. Today what we see as dark matter is those neutrinos in orbit around galaxies. This is why I figure after years of fruitless searching they have no found any other candidates for dark matter.


22 posted on 08/22/2020 2:51:38 PM PDT by Nateman (If the left is not screaming, you are doing it wrong!)
[ Post Reply | Private Reply | To 1 | View Replies]

To: TexasGator

yeah man I can’t believe what I’m reading. I think a lot of people are commenting that don’t do a lot of reading on it or don’t know much about the subject


23 posted on 08/22/2020 2:51:58 PM PDT by dp0622 (I DON'T KNOW WHAT TO DO ABOUT THE COVID GODFATHER I DON'T KNOW WHAT TO DO. YOU CAN ACT LIKE A MAN!)
[ Post Reply | Private Reply | To 16 | View Replies]

To: SunkenCiv

Sterile species tend to die out. Maybe it’s too late to find sterile nutrinos


24 posted on 08/22/2020 2:52:26 PM PDT by faithhopecharity (Politicians are not born, they are excreted. Marcus Tullius Cicero (106 to 43 BCE))
[ Post Reply | Private Reply | To 1 | View Replies]

To: thoughtomator

” including electrons, is thought to exist only through mathematical speculation.”

tons of evidence that electrons exist ... both practical and experimental evidence that goes all the way back to the late 19th century ... pretty much ALL chemistry, electronics, and electrical generation, transmission and application are based on the behavior of electrons ... obviously you know zilch about physics and chemistry if you believe that electrons are nothing but a mathematical construct ...


25 posted on 08/22/2020 3:10:08 PM PDT by catnipman (Cat Nipman: Vote Republican in 2012 and only be called racist one more time!)
[ Post Reply | Private Reply | To 10 | View Replies]

To: SunkenCiv

Very misleading title that infers, at least to me, that neutrinos may not exist.

But the text says no such thing. It tell me that we know of three “flavors” of neutrinos that do exist but the search for a fourth has failed at least so far.

Correct me if I’m wrong. I would really miss my Pet Neutrinos if I had to give them up.


26 posted on 08/22/2020 3:10:35 PM PDT by InterceptPoint (Ted, you finally endorsed.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Steely Tom

“That would make the continuous energy spectrum of beta decay electrons rather difficult to explain.”

Please explain.


27 posted on 08/22/2020 3:12:45 PM PDT by TexasGator (Z1z)
[ Post Reply | Private Reply | To 20 | View Replies]

To: Harmless Teddy Bear; thoughtomator

As the father of a particle physicist whose research area is neutrinos, I cannot emphasize enough how completely erroneous your characterizations of the field are.

One does not earn a PhD in Physics by ‘making up the math’. Yes, they necessarily postulate theories and conduct experiments that may not ultimately succeed, but that is inherent in the process of discovering and/or quantifying the heretofore unknown.

The fact is that even when leading edge physics is not “successful”, the process, understanding and math invested in same often leads to great benefits in more “practical” areas of our lives. In fact, from medical imaging to modern video games, the groundwork was developed by physicists as they sought to understand and define the unknown.

For that matter, the field of construction is also built upon the principles and advancements made in the discipline of physics.


28 posted on 08/22/2020 3:29:35 PM PDT by molewhacka
[ Post Reply | Private Reply | To 8 | View Replies]

To: ClearCase_guy; BenLurkin; SunkenCiv

Odd. Are these a variation or flavor-of-the-latest-physics-of-the-month of the original neutrino?

Thought the neutrino had been detected in enough numbers - though indeed few - that there was no doubt they existed at the fundamental particle level.


29 posted on 08/22/2020 3:37:05 PM PDT by Robert A Cook PE ( I can only donate monthly, but the radical ABCNNBCBS does it every hour on their news.)
[ Post Reply | Private Reply | To 4 | View Replies]

To: Robert A Cook PE

https://en.wikipedia.org/wiki/Sterile_neutrino


30 posted on 08/22/2020 3:43:21 PM PDT by TexasGator (Z1z)
[ Post Reply | Private Reply | To 29 | View Replies]

To: SunkenCiv

31 posted on 08/22/2020 3:47:17 PM PDT by BenLurkin (The above is not a statement of fact. It is either opinion or satire. Or both.)
[ Post Reply | Private Reply | To 3 | View Replies]

To: molewhacka
One does not earn a PhD in Physics by ‘making up the math’.

No, that happens later.

Once you have your Ph.D.

To earn it you need to learn the made up math that other people created.

For that matter, the field of construction is also built upon the principles and advancements made in the discipline of physics.

You have that backwards.

32 posted on 08/22/2020 4:02:22 PM PDT by Harmless Teddy Bear (And lead us not into hysteria, but deliver us from the handwashers. Amen!)
[ Post Reply | Private Reply | To 28 | View Replies]

To: Harmless Teddy Bear

“You have that backwards.”

How is that?


33 posted on 08/22/2020 4:06:58 PM PDT by TexasGator (Z1z)
[ Post Reply | Private Reply | To 32 | View Replies]

To: TexasGator
The Wikipedia article on beta decay explains it very well. As is the case with many great discoveries, it's useful to go back to the beginning, and try to see things through the eyes of those who first saw the evidence:

The study of beta decay provided the first physical evidence for the existence of the neutrino. In both alpha and gamma decay, the resulting alpha or gamma particle has a narrow energy distribution, since the particle carries the energy from the difference between the initial and final nuclear states. However, the kinetic energy distribution, or spectrum, of beta particles measured by Lise Meitner and Otto Hahn in 1911 and by Jean Danysz in 1913 showed multiple lines on a diffuse background. These measurements offered the first hint that beta particles have a continuous spectrum.

In 1914, James Chadwick used a magnetic spectrometer with one of Hans Geiger's new counters to make more accurate measurements which showed that the spectrum was continuous. The distribution of beta particle energies was in apparent contradiction to the law of conservation of energy. If beta decay were simply electron emission as assumed at the time, then the energy of the emitted electron should have a particular, well-defined value.

For beta decay, however, the observed broad distribution of energies suggested that energy is lost in the beta decay process. This spectrum was puzzling for many years.

From 1920–1927, Charles Drummond Ellis (along with Chadwick and colleagues) further established that the beta decay spectrum is continuous. In 1933, Ellis and Nevill Mott obtained strong evidence that the beta spectrum has an effective upper bound in energy. Niels Bohr had suggested that the beta spectrum could be explained if conservation of energy was true only in a statistical sense, thus this principle might be violated in any given decay. However, the upper bound in beta energies determined by Ellis and Mott ruled out that notion. Now, the problem of how to account for the variability of energy in known beta decay products, as well as for conservation of momentum and angular momentum in the process, became acute.

In a famous letter written in 1930, Wolfgang Pauli attempted to resolve the beta-particle energy conundrum by suggesting that, in addition to electrons and protons, atomic nuclei also contained an extremely light neutral particle, which he called the neutron. He suggested that this "neutron" was also emitted during beta decay (thus accounting for the known missing energy, momentum, and angular momentum), but it had simply not yet been observed. In 1931, Enrico Fermi renamed Pauli's "neutron" the "neutrino" ('little neutral one' in Italian). In 1933, Fermi published his landmark theory for beta decay, where he applied the principles of quantum mechanics to matter particles, supposing that they can be created and annihilated, just as the light quanta in atomic transitions. Thus, according to Fermi, neutrinos are created in the beta-decay process, rather than contained in the nucleus; the same happens to electrons. The neutrino interaction with matter was so weak that detecting it proved a severe experimental challenge. Further indirect evidence of the existence of the neutrino was obtained by observing the recoil of nuclei that emitted such a particle after absorbing an electron. Neutrinos were finally detected directly in 1956 by Clyde Cowan and Frederick Reines in the Cowan–Reines neutrino experiment. The properties of neutrinos were (with a few minor modifications) as predicted by Pauli and Fermi.

Source: Wikipedia — Beta Decay

The significance of the "continuous spectrum" (meaning that the velocity of individual electrons emitted by beta decay from elements like radium and thorium varies over a wide range, with a few peaks) is key. It implies that momentum is not conserved in the subatomic processes that cause the electron to be formed and then to be kicked away from the site of its creation, which (though this wasn't known at the time) was a neutron or a proton, each of which weighs almost 2000 times as much as the emitted electron.

The conservation of momentum is an absolutely solid, immutable law of physics.

In order to explain the continuous spectrum of beta particle energy, there would either (1) have to be a violation of the conservation of momentum, or (2) some other particle would have to be emitted.

Wolfgang Pauli was the first to see this possibility, nearly twenty years after the experimental evidence had been observed and published. He called his hypothetical particle "neutron"; the particle we know today as the neutron wasn't discovered until 1931, so no one had used that name yet. It was Enrico Fermi who resolved that conflict by proposing to call Pauli's particle the "neutrino," meaning "little neutral one" in colloquial Italian.

Pauli didn't get his Nobel prize for the discovery of the neutrino, he got it for what has come to be known as the "Pauli exclusion principle," which is perhaps even more momentous a discovery than the neutrino... which is really saying something.

The first Nobel prize awarded in connection to the study of neutrinos was awarded to Clyde L. Cowan and Frederick Reines in 1956; they were the first to prove the existence of neutrinos by direct detection, more than 40 years after the first indirect evidence had been provided by Lise Meitner and Otto Hahn. Several additional Nobel prizes have been awarded to neutrino researchers since.

34 posted on 08/22/2020 4:10:33 PM PDT by Steely Tom ([Seth Rich] == [the Democrats' John Dean])
[ Post Reply | Private Reply | To 27 | View Replies]

To: Steely Tom

Posting that does not support your post.


35 posted on 08/22/2020 4:16:38 PM PDT by TexasGator (Z1z)
[ Post Reply | Private Reply | To 34 | View Replies]

To: SunkenCiv

Sheldon Cooper meltdown in 3..2..1..


36 posted on 08/22/2020 4:23:23 PM PDT by DAC21
[ Post Reply | Private Reply | To 1 | View Replies]

To: TexasGator
Posting that does not support your post.

Actually, it does.

37 posted on 08/22/2020 4:24:25 PM PDT by Steely Tom ([Seth Rich] == [the Democrats' John Dean])
[ Post Reply | Private Reply | To 35 | View Replies]

To: DAC21
I didn't even try my Oldtrino joke.

38 posted on 08/22/2020 4:25:16 PM PDT by SunkenCiv (Imagine an imaginary menagerie manager imagining managing an imaginary menagerie.)
[ Post Reply | Private Reply | To 36 | View Replies]

To: SunkenCiv

I have no opinion on the neutrino, but it should go without saying that any scientific fact presented today may be proved by future experiment to be incomplete or wrong.


39 posted on 08/22/2020 5:54:44 PM PDT by Tax-chick ("What we can see of God's canvas is laughably small." ~Bp. Barron)
[ Post Reply | Private Reply | To 1 | View Replies]

To: dp0622
"I think a lot of people are commenting that don’t do a lot of reading on it or don’t know much about the subject"

You just discovered that today?

40 posted on 08/22/2020 6:02:11 PM PDT by norwaypinesavage (Calm down and enjoy the ride, great things are happening for our country)
[ Post Reply | Private Reply | To 23 | View Replies]


Navigation: use the links below to view more comments.
first previous 1-2021-4041-6061-8081-88 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
General/Chat
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson