Free Republic
Browse · Search
Religion
Topics · Post Article

To: Doctor Stochastic
Therefore, scientists now generally believe that this DNA must contain some kind of coded information. But the code and its function is yet completely unknown.

Sounds like proof positive to me.

394 posted on 03/28/2002 9:11:41 PM PST by <1/1,000,000th%
[ Post Reply | Private Reply | To 390 | View Replies ]


To: 1/1,000,000th%
Okay, here's the whole article. You refute it. And if you this is not enough, I can post 10 more articles like it.

"Junk DNA" Over 95 percent of DNA has largely unknown function By Jaan Suurkula M.D. Presently, only the function of a few percent of the DNA is known, the rest has been believed to be "junk". The most exhaustive knowledge is about the genes responsible for the bodily structures, the structural genes, which are the simplest part of the system. But the knowledge about the most important part of this system, the regulator genes, is incomplete. The genetic code language of these genes is only partially known. More than 95 percent of all DNA, was called "Junk DNA" by molecular biologists, because they were unable to ascribe any function to it. They assumed that it was just "molecular garbage". If it were "junk", the sequence of the "syllables", i.e. the nucleotides in DNA should be completely random. However it has been found that the sequence of the syllables is not random at all and has a striking resemblance with the structure of human language (ref. Flam, F. "Hints of a language in junk DNA", Science 266:1320, 1994, see quote below). Therefore, scientists now generally believe that this DNA must contain some kind of coded information. But the code and its function is yet completely unknown. It has been reported that the sequences of this unknown DNA are inherited and that some repetitive patterns in it seem to be associated with increased risk for cancer. Also, the DNA has been found to mutate rapidly for example in response to cancer. It has been speculated that this DNA may contribute to the regulation of cellular processes. Haig H. Kazazian, Jr., chairman of genetics at the University of Pennysylvania has recently found reasons to suspect they may be a key force for the development of new species during evolution. He thinks this DNA may be essential for increasing the plasticity of the hereditary substance. Such observations have spurred an extensive research into "Junk DNA" in recent years, some of which is briefly presented below. Recent studies Various important roles of "Junk DNA" have been discovered in recent years. Some studies have found that noncoding DNA plays a vital role in the regulation of gene expression during development (Ting SJ. 1995. A binary model of repetitive DNA sequence in Caenorhabditis elegans. DNA Cell Biol. 14: 83-85.), including: development of photoreceptor cells (Vandendries ER, Johnson D, Reinke R. 1996. Orthodenticle is required for photoreceptor cell development in the Drosophila eye. Dev Biol 173: 243-255.), the reproductive tract (Keplinger BL, Rabetoy AL, Cavener DR. 1996. A somatic reproductive organ enhancer complex activates expression in both the developing and the mature Drosophila reproductive tract. Dev Biol 180: 311-323.), and the central nervous system (Kohler J, Schafer-Preuss S, Buttgereit D. 1996. Related enhancers in the intron of the beta1 tubulin gene of Drosophila melanogaster are essential for maternal and CNS-specific expression during embryogenesis. Nucleic Acids Res 24: 2543-2550.). Over 700 studies have demonstrated the role of non-coding DNA as enhancers for transcription of proximal genes. This includes a/o: eosinophil-derived neurotoxin (EDN) and eosinophil cationic protein (ECP) (Tiffany HL, Handen JS, Rosenberg HF. 1996. Enhanced expression of the eosinophil-derived neurotoxin ribonuclease (RNS2) gene requires interaction between the promoter and intron. J Biol Chem 271: 12387-12393), the variable region of the rearranged immunoglobulin mu (IgM) gene (Jenuwein T, Forrester WC, Fernandez-Herrero LA, Laible G, Dull M, Grosschedl R. 1997. Extension of chromatin accessibility by nuclear matrix attachment regions. Nature 385: 269-272.; Nikolajczyk BS, Nelsen B, Sen R. 1996. Precise alignment of sites required for mu enhancer activation in B cells. Mol Cell Biol 16: 4544-4554), the alpha-globin gene (Bouhassira EE, Kielman MF, Gilman J, Fabry MF, Suzuka S, Leone O, Gikas E, Bernini LF, Nagel RL. 1997. Properties of the mouse alpha-globin HS-26: relationship to HS-40, the major enhancer of human alpha-globin gene expression. Am J Hematol 54: 30-39), the activin beta A subunit gene (Tanimoto K, Yoshida E, Mita S, Nibu Y, Murakami K, Fukamizu A. 1996. Human activin betaA gene. Identification of novel 5' exon, functional promoter, and enhancers. J Biol Chem 271: 32760-32769). Over 60 studies have demonstrated the role of non-coding DNA as silencers for suppression of transcription of proximal genes. Such silencer genes include a/o: apolipoprotein A-II gene (Bossu JP, Chartier FL, Fruchart JC, Auwerx J, Staels B, Laine B. 1996. Two regulatory elements of similar structure and placed in tandem account for the repressive activity of the first intron of the human apolipoprotein A-II gene. Biochem J 318: 547-553.), the osteocalcin gene (Goto K, Heymont JL, Klein-Nulend J, Kronenberg HM, Demay MB. 1996. Identification of an osteoblastic silencer element in the first intron of the rat osteocalcin gene. Biochemistry 35: 11005-11011), the 2-crystallin gene (Dirks RP, Kraft HJ, Van Genesen ST, Klok EJ, Pfundt R, Schoenmakers JG, Lubsen NH. 1996. The cooperation between two silencers creates an enhancer element that controls both the lens-preferred and the differentiation stage-specific expression of the rat beta B2-crystallin gene. Eur J Biochem 239: 23-32). Some studies indicate that non-coding DNA regulate translation of proteins. This includes a/o the Lipoprotein Lipase gene (Ranganathan G, Vu D, Kern PA. 1997. Translational Regulation of Lipoprotein Lipase by Epinephrine Involves a Trans-acting Binding Protein Interacting with the 3' Untranslated Region. J Biol Chem 272: 2515-2519) glutathione peroxidase and phospholipid-hydroperoxide glutathione peroxidase genes (Bermano G, Arthur JR, Hesketh JE. 1996. Role of the 3' untranslated region in the regulation of cytosolic glutathione peroxidase and phospholipid-hydroperoxide glutathione peroxidase gene expression by selenium supply. Biochem J 320: 891-895), the luteinizing hormone/human chorionic gonadotropin receptor gene (58. Lu DL, Menon KM. 1996. 3' untranslated region-mediated regulation of luteinizing hormone/human chorionic gonadotropin receptor expression. Biochemistry 35: 12347-12353), the thyrotropin receptor gene (Kakinuma A, Chazenbalk G, Filetti S, McLachlan SM, Rapoport B. 1996. BOTH the 5' and 3' noncoding regions of the thyrotropin receptor messenger ribonucleic acid influence the level of receptor protein expression in transfected mammalian cells. Endocrinology 137: 2664-2669), the interleukin 1 type I receptor gene (Ye K, Vannier E, Clark BD, Sims JE, Dinarello CA. 1996. Three distinct promoters direct transcription of different 5' untranslated regions of the human interleukin 1 type I receptor: a possible mechanism for control of translation. Cytokine 8: 421-429) Conclusion The idea that a major part of our DNA is "garbage" ignored the fact that a key feature of biological organisms is optimal energy expenditure. To carry enormous amounts of unnecessary molecules is contrary to this fundamental energy saving feature of biological organisms. Increasing evidence are now indicating many important functions of this DNA, including various regulatory roles. This means that this so-called non-coding DNA influences the behavior of the genes, the "coding DNA", in important ways. Still there is very little knowledge about the relationship between non-coding DNA and the DNA of genes. This adds to other factors making it impossible to foresee and control the effect of artificial insertion of foreign genes. -------------------------------------------------------------------------------- JUNK DNA- May Not Be Junk After All (Quoted from Gene exchange no 2, 1996) In another reminder that we may not understand the full ramifications of genetic engineering, Science magazine recently reported new work on the function of genetic material*. Scientists have long been puzzled by the fact that fully 97% of the DNA in human cells does not code for proteins and appears to consist of meaningless sequences. The possibility that this apparently useless DNA has some as yet unknown function continues to tantalize scientists. The Science article reports on a paper suggesting that the non-coding 97% of the DNA, commonly referred to as junk DNA, might have a function. The authors of the paper employed linguistic tests to analyze junk DNA and discovered striking similarities to ordinary language. The scientists interpret those similarities as suggestions that there might be messages in the junk sequences, although its anyone s guess as to how the language might work. * F. Flam, Hints of a language in junk DNA, Science 266:1320, 1994.

399 posted on 03/28/2002 9:33:38 PM PST by gore3000
[ Post Reply | Private Reply | To 394 | View Replies ]

Free Republic
Browse · Search
Religion
Topics · Post Article


FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson