Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Artificial 'superatoms' for a new periodic table
Chemistry World ^ | 7 June 2013 | Simon Hadlington

Posted on 06/09/2013 12:09:23 AM PDT by neverdem

'Superatoms' can be used to make ionic-esque lattices using C60 (black) and metal chalcogenides © Science/AAAS

Could a new periodic table be on the horizon, populated not by conventional elements but by new ‘superatoms’ designed in the lab? This is the intriguing implication of new work by US chemists, who have made structural analogues of simple ionic compounds such as sodium chloride and cadmium iodide by interacting large molecular clusters instead of individual atoms.

The new compounds have unexpected electronic and magnetic properties, opening the prospect for the design of bespoke solid state materials whose properties can be tuned by the selection of the constituent superatoms.

The research team, led by Colin Nuckolls and Michael Steigerwald at Columbia University in New York, wondered what would happen if electron-rich molecular clusters were introduced to similarly sized electron-poor clusters. They mixed the metal chalcogenide Co6Se8(PEt3)6 with C60 clusters – also known as buckyballs – in toluene. ‘The result was pretty spectacular,’ says Steigerwald. ‘When we came back there were enormous black crystals. I was convinced it was the C60 recrystallising.’ But x-ray diffraction studies showed that the crystals consisted of one chalcogenide combined with two C60 clusters in a geometry analogous to cadmium iodide. Raman spectroscopy showed that charge had been transferred between the two components, effectively forming an ionic solid, with similar structural ordering to its conventional counterpart.

‘Once we had one structure it was obvious to start mixing other clusters together,’ says Nuckolls. They tried Cr6Te8(PEt3)6 with buckyballs and obtained a crystal with a similar CdI2 architecture. The third electron-rich cluster the team mixed with C60 was Ni9Te6(PEt3)8. ‘Here the crystals were quite small and looked like tiny cubes,’ says Nuckolls. And indeed the two superatomic components had combined in a 1:1 ratio and the crystal lattice resembled that of rock salt, NaCl.

Each of the three materials were electrically conductive, and the third material, made with the nickel-based superatom, had magnetic characteristics that were present in neither of its two constituent superatoms.

The researchers are convinced that the opportunities for such new superatomic combinations are almost limitless. ‘We think this isn’t even the tip of the iceberg – it is the ice cube on the tip of the iceberg,’ says Nuckolls. Steigerwald adds, ‘This could become the third dimension of the two-dimensional periodic table.’

The team is seeking new super-atomic materials and, says Nuckolls, ‘already has a few in our back pocket’.

Commenting on the work, Christopher Murray of the University of Pennsylvania, US, who researches nanocrystalline systems, says: ‘This is a really elegant piece of work, and it represents significant step forward in the design of cluster-assembled materials.’ Murray notes that while the use of molecular clusters as nanoscale surrogates for atomic building blocks has excited many researchers, ‘producing single crystals with clearly delocalised electronic structure is really extraordinary. The properties of these “nanoscale atoms” could be widely tuned by synthetic methods and the resulting opportunities to engineer new crystalline materials with tailored optical, electrical and magnetic properties are extensive.’

Murray adds: ‘This work provides a powerful example that the building blocks of solid state chemistry are not longer limited to nature’s periodic table, as tailored molecular clusters can serve as “artificial atoms” in a greatly expanded building set.

References

X Roy et al, Science, 2013, DOI: 10.1126/science.1236259


TOPICS: News/Current Events; Technical
KEYWORDS: chemistry; solidstatechemistry; stringtheory; superatoms
Navigation: use the links below to view more comments.
first 1-2021 next last

1 posted on 06/09/2013 12:09:23 AM PDT by neverdem
[ Post Reply | Private Reply | View Replies]

To: neverdem

Jeez, I wish I was young and in school again!


2 posted on 06/09/2013 12:30:33 AM PDT by JoeDetweiler
[ Post Reply | Private Reply | To 1 | View Replies]

To: neverdem

just damn!


3 posted on 06/09/2013 12:42:54 AM PDT by NonValueAdded (Unindicted Co-conspirators: The Mainstream Media)
[ Post Reply | Private Reply | To 1 | View Replies]

To: neverdem

Call me when they ave developed “Dilithium” “Durainium” and “Tritanium” I wanna build me a starship...


4 posted on 06/09/2013 2:10:22 AM PDT by GraceG
[ Post Reply | Private Reply | To 1 | View Replies]

To: neverdem

Superatomic transparent aluminum- someone ping me when this happens.


5 posted on 06/09/2013 3:15:44 AM PDT by Eepsy
[ Post Reply | Private Reply | To 1 | View Replies]

To: GraceG
I just wanta survive the O'Butcrack years.....

6 posted on 06/09/2013 3:18:24 AM PDT by skinkinthegrass (who'll take tomorrow,$pend it all today;who can take your income & tax it all away..0'Blowfly can :-)
[ Post Reply | Private Reply | To 4 | View Replies]

To: neverdem

Chemistry bump


7 posted on 06/09/2013 3:22:59 AM PDT by Fzob (In matters of style, swim with the current; in matters of principle, stand like a rock. Jefferson)
[ Post Reply | Private Reply | To 1 | View Replies]

To: neverdem

Interesting stuff
But it is goofy to talk about a new periodic table
The periodic table groups ‘elements’
Each element is defined by the number of protons in its nucleus
The paper describes compounds that share electrons in a unique way, but there is no change in the nucleus

BTW - the periodic table is already three dimensional. Each element has different isotopes...different numbers of neutrons in the nucleus


8 posted on 06/09/2013 3:23:57 AM PDT by kidd
[ Post Reply | Private Reply | To 1 | View Replies]

To: GraceG

Dilithium already exists, but only in the gaseous phase.


9 posted on 06/09/2013 3:31:35 AM PDT by Olog-hai
[ Post Reply | Private Reply | To 4 | View Replies]

To: neverdem

Those look like the little candies they used to put in the toy doctors’ kits...sometimes located next to the candy cigarettes.


10 posted on 06/09/2013 4:26:41 AM PDT by Dr. Sivana (There's no salvation in politics.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: neverdem

Great! now we can build a portable nuclear (how do I pronounce that?) reactor.


11 posted on 06/09/2013 4:27:26 AM PDT by VRW Conspirator (The Lefties can drink Kool-Aid; I will drink Tea. - VRW Conspirator)
[ Post Reply | Private Reply | To 1 | View Replies]

To: JoeDetweiler

Was thinking the same thing...


12 posted on 06/09/2013 5:16:31 AM PDT by colinhester
[ Post Reply | Private Reply | To 2 | View Replies]

To: kidd
Those were exactly my thoughts when I read the article - man, are you a geek!

Just kidding.

I have been eagerly anticipating the "island of stability" predicted by further stability of nuclei around Z=247.

13 posted on 06/09/2013 5:18:50 AM PDT by Aevery_Freeman (We say "low-information" but we mean "low-intelligence")
[ Post Reply | Private Reply | To 8 | View Replies]

To: neverdem

“Super atoms”.
We called these molecules when I was in school.


14 posted on 06/09/2013 6:19:36 AM PDT by Born to Conserve
[ Post Reply | Private Reply | To 1 | View Replies]

To: JoeDetweiler

How old would you be if you did not know how old you are?
Also - teaching company DVDs are at many libraries.
Why should the snot nose kids have all the fun?


15 posted on 06/09/2013 6:29:38 AM PDT by epluribus_2
[ Post Reply | Private Reply | To 2 | View Replies]

To: kidd
But it is goofy to talk about a new periodic table The periodic table groups ‘elements’ Each element is defined by the number of protons in its nucleus The paper describes compounds that share electrons in a unique way, but there is no change in the nucleus

Correct. I'm not sure what the 'Et' is in Co6Se8(PEt3)6.

16 posted on 06/09/2013 6:39:33 AM PDT by Hoodat (BENGHAZI - 4 KILLED, 2 MIA)
[ Post Reply | Private Reply | To 8 | View Replies]

To: Hoodat

http://pubs.acs.org/doi/pdfplus/10.1021/cm950378%2B

I think it’s a triethyl phosphate moiety, IMHO.


17 posted on 06/09/2013 9:50:59 AM PDT by neverdem (Register pressure cookers! /s)
[ Post Reply | Private Reply | To 16 | View Replies]

To: 6SJ7; AdmSmith; AFPhys; Arkinsaw; allmost; aristotleman; autumnraine; Beowulf; Bones75; BroJoeK; ...

Thanks neverdem.

· String Theory Ping List ·
Image: Holly Lindem
· Join · Bookmark · Topics · Google ·
· View or Post in 'blog · post a topic · subscribe ·


18 posted on 06/09/2013 10:10:05 AM PDT by SunkenCiv (McCain would have been worse, if you're a dumb ass.)
[ Post Reply | Private Reply | View Replies]

To: Hoodat
Correction: make that 6 triethyl phosphorus moieties within the overall molecule, Cr6Te8(PEt3)6, one of the examples given.
19 posted on 06/09/2013 10:16:18 AM PDT by neverdem (Register pressure cookers! /s)
[ Post Reply | Private Reply | To 16 | View Replies]

To: neverdem
The properties of these “nanoscale atoms” could be widely tuned by synthetic methods and the resulting opportunities to engineer new crystalline materials with tailored optical, electrical and magnetic properties are extensive.’

I have no significant background in chemistry, but my imagination is running wild here... Why hasn't the Pentagon clamped a lid on this research? Does the research have no application, say, to explosives, among other things of interest to the Pentagon? Seems to me it potentially could have, especially when the researchers begin talking about a "limitless" number of possibilities and applications.

20 posted on 06/09/2013 2:01:42 PM PDT by LibWhacker
[ Post Reply | Private Reply | To 1 | View Replies]


Navigation: use the links below to view more comments.
first 1-2021 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson