Free Republic
Browse · Search
News/Activism
Topics · Post Article

Skip to comments.

Helping good bacteria reach their target
Chemistry World ^ | 6 November 2012 | Elinor Hughes

Posted on 11/07/2012 11:39:17 AM PST by neverdem

Most probiotic bacteria that are added to foods, such as yoghurt, to aid the digestive system are not reaching their intended target in the intestine. Instead, the majority are being destroyed in the stomach before they can do any good. Now, UK scientists have come up with a coating to overcome this problem.1

Probiotic yoghurt drink

Probiotic bacteria are added to food such as yoghurt drinks to aid the digestive system. © Shutterstock

Probiotics are bacteria that naturally live in the small and large intestine. They provide health benefits by producing nutrients, compete with pathogenic bacteria for binding sites and stimulate the immune system.

Materials scientist Vitaliy Khutoryanskiy and microbiologist Dimitris Charalampopoulos and their colleagues at the University of Reading overcame the problem of the bacteria dying before they could enter the intestines by building them a coat of alginate and chitosan layer-by-layer. This coat protects the bacteria as it travels through the stomach to the intestine.

‘Delivering probiotics via the oral route is considered to be beneficial for treating disorders of the gastrointestinal tract including irritable bowel syndrome, bacterial infections and diarrhoea caused by antibiotics,' says Khutoryanskiy. 'However, the majority of probiotic bacteria taken orally cannot pass through the acidic environment in the stomach and remain viable. So, building on our previous work,2 our idea was to protect these bacteria via encapsulation.'

The team dispersed live bacteria in an aqueous sodium alginate solution and extruded it into a solution of calcium chloride to form calcium alginate beads (alginate forms a gel in the presence of calcium ions). Then, they formed a coating around the beads by depositing alternating layers of alginate, a negatively-charged polysaccharide, and chitosan, a positively-charged polysaccharide, on their surface.

‘We have established that the formation of a multi-layered coating can result in efficient protection of live bacteria within these capsules, but the levels of protection and the viability of bacteria are dependent on the number of multilayers deposited,’ says Khutoryanskiy. ‘Encapsulation in the alginate matrixes coated with three layers gave us the highest levels of viable cells.’ They also demonstrated that the capsules release viable bacteria in vitro under the pH conditions of the intestinal tract.

In the future, the team hopes to study the delivery of viable bacteria using their capsules in vivo in experimental animals. ‘We also need to evaluate the shelf life and long-term stability of these capsules under various storage conditions,’ adds Khutoryanskiy.

‘Encapsulating probiotic bacteria for their protection and targeted release is important, as probiotics are apparently important for our health,' says Yoav Livney, associate professor at the biotechnology and food engineering department, Technion, Israel Institute of Technology, in Haifa, Israel. 'Increasing their survival through the stomach is a worthy goal.'

‘The study seems to have been well performed and the results are interesting,’ adds Livney, ‘particularly the fact that increasing the number of layers up to three improved gastric survival of the bacteria. However, above three layers, survival decreased. This was attributed by the authors to the increased swelling and reduced cross-linking density of the capsules, allowing a greater influx of gastric fluid, which the team suggests may be avoided by the re-hardening of the capsules in calcium chloride solution.’

References

1 M T Cook et al, J. Mater. Chem., B, 2013, DOI: 10.1039/c2tb00126h

2 M T Cook et al, Biomacromolecules, 2011, 12, 2834 (DOI: 10.1021/bm200576h)


TOPICS: Culture/Society; News/Current Events; Testing
KEYWORDS: biology; chemistry; probiotics

1 posted on 11/07/2012 11:39:22 AM PST by neverdem
[ Post Reply | Private Reply | View Replies]

To: neverdem

Aw, I thought this article was going to be about Democrat voter social diseases.


2 posted on 11/07/2012 3:42:29 PM PST by TexasRepublic (Socialism is the gospel of envy and the religion of thieves)
[ Post Reply | Private Reply | To 1 | View Replies]

To: neverdem

if you take acidophilus with chlorinated water, does the water kill the bacteria?


3 posted on 11/14/2012 1:12:03 PM PST by Coleus
[ Post Reply | Private Reply | To 1 | View Replies]

To: Coleus
The use of chlorine has greatly reduced the prevalence of waterborne disease as it is effective against almost all bacteria and viruses, as well as amoeba.

I don't know about acidophilus in particular.

4 posted on 11/14/2012 9:42:18 PM PST by neverdem ( Xin loi min oi)
[ Post Reply | Private Reply | To 3 | View Replies]

To: Coleus

Reduces the live numbers but won’t wipe it out. About like taking it with a vodka drink. Best to take acidophilus with milk or yogurt. I take it when I’ve had any intestinal ‘troubles’, and eat a big bowl of oatmeal afterwards.


5 posted on 11/14/2012 9:50:22 PM PST by MHGinTN (Being deceived can be cured.)
[ Post Reply | Private Reply | To 3 | View Replies]

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
News/Activism
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson