Free Republic
Browse · Search
General/Chat
Topics · Post Article

Skip to comments.

Beam-Riding and Sail Stability (sending "starchips" to α Centauri: travel time 20-40yrs)
Centauri Dreams ^ | 6/23/17 | Paul Gilster

Posted on 06/24/2017 11:15:56 AM PDT by LibWhacker

Beam-Riding and Sail Stability

by Paul Gilster on June 23, 2017

Breakthrough Starshot, the ambitious 30-year plan for launching small interstellar craft to a nearby star, depends critically on the sails that will ride a laser beam to 20 percent of lightspeed. In the essay below, James Benford takes a hard look at where we are now in the matter of sail stability, a subject he and brother Gregory have analyzed in their laboratory work. But as Jim points out, there is a great deal we still don’t know, emphasizing the need for a dedicated test facility in which deep analysis and experimentation can proceed. The Chairman of the Sail Subcommittee for Breakthrough Starshot, Dr. Benford gives us insight into the magnitude of the challenge, and the possible solutions now being considered.

By James Benford

James-Benford-starship-255x300

Riding on the beam, i.e., stable flight of a sail propelled by beam momentum, is an essential requirement of beam-driven propulsion. It places considerable demand upon the shape of the sail and beam. Some amount of beam jitter, oscillations in the location of the beam, is to be expected. But even if the beam is steady, a sail can wander off the beam and its shape can become deformed by the high acceleration. Little of the parameter space of possible sail shapes and materials, as well as beam shapes, has been explored to date. Here I describe recent developments.

Sail Geometries

Generally, sails without structural elements cannot be flown if they are convex toward the beam, as the beam pressure would act to compress and perhaps collapse them. On the other hand, beam pressure keeps concave shapes in tension, so conical concave shapes are a possible natural answer to sailship configuration questions, essentially a circular cone. These shapes resist sideways motion if the beam moves off-center, since a net sideways force restores the sail to its original position.

Simulations show that this passive stability works, but it requires suspending the payload below the sail for a more stable configuration. This configuration is a conical shape, perhaps spinning, with the payload hanging from the apex along a tether, which may be flexible, as in Figure 1. It is shaped roughly like a parachute. (Although sails have stress distributions different from a parachute: The beam pressure keeps concave shapes of sail under tensile stress, but the periphery of the sail tends to close, so the sail needs a ring at the largest radius to keep it unfurled. This ring is under compression, and subject to elastic instability.) Such a ring may be a logical place to put the payload, which I think should be distributed to avoid single point failures. I’d much rather have it around the periphery and with some redundancy. One thing I’d don’t like about the “chipsail” idea is that having a single few square centimeter chip on a few square meter sail means that one unfortunate interstellar dust impact will obliterate the payload, losing the mission.

Simulations of conical sails showed the boundaries of sail shape and payload mass giving stability [1]. Simulations at JPL and University of New Mexico showed stability for sail shapes with the conical surface at angles from the horizontal of 25 to 30 degrees, a narrow range. Experiments have verified that beam-riding restoring forces do occur [2]. Stability also depends upon the ratio of the sail mass to payload mass. A recent analysis by Popova et al. showed analytically that stability occurs when the distance from the sail to the center of mass of the entire assembly is larger than the sail radius of curvature for small radius of curvature-L greater than D, the sail diameter [3]. These results mean that the tether must be several times the sail diameter. The mechanical oscillation modes of the tether/payload/sail that affect stability will require carefully analysis.

benford_fig01

Figure 1 Conical sail with payload of mass mp hanging beneath it, connected by a tether or pendulum bob of length L (Credit: Z. Manchester).

Manchester & Loeb have suggested a spherical sail-hollow, like a shiny balloon, riding on a hollowed-out ‘donut’ beam shape [4]. This architecture has passive stability while also allowing the payload to be inside the sphere, shielded from the laser beam. That’s because it produces a potential well for the sail to sit in, which is stable if the well is deep enough. But the well in the figure is rather shallow. The sail can be inflated into the spherical shape, so could be gas-filled. This hollow beam, composed of 4 Gaussians is just one of many possible “hollow beam” geometries.

benford_fig02

Figure 2 Multimodal beam profile composed of four Gaussian laser beams with spherical sail immersed in them. The corresponding ‘potential well’ for the transverse dynamics of a sail is much shallower than this beam intensity profile. (Credit: Z. Manchester).

From [4] I calculate that, in the example profile of figure 2, 80% of the beam power is lost to the sides of the sail in order to produce this stable regime. That would require that the power of the laser be increased to factor of 5, a huge cost which may be improved using a ring beam with no low areas, through which the sail can escape. Therefore the cost of the spherical sail–hollow beam approach is a big drawback.

benford_03

Figure 3 A spherical sail will resemble this helium-filled aluminized Mylar balloon. The beam pressure can cause the beam-facing side of the sail to flatten, assuming a more hemisphere shape.

The spherical sail is an idealization akin to that of the “spherical cow” of theoretical physics infamy. In practice, material under about 10,000 g’s acceleration will not remain spherical. It will be deformed under acceleration into an oblate shape, and therefore the spherical symmetry will cease. So will the stability guarantee. The beam pressure causes the beam-facing side of the sail to flatten, so it assumes a more hemisphere shape. Such deformation of the sphere’s surface could cause significant torques on the sail, complicating analysis. This should be explored by modeling and numerical simulations.

Finally, a spherical sail maximizes cross-section to interstellar dust & gas. Compare to a shallow cone, rotated to go edge-on to the direction of travel. The spherical sail must undergo topology change to reveal the payload, and then reconfigure to become an antenna for return of data. 

Modeling Sail Flight

Models of sail stability have thus far assumed a perfectly rigid sail. To deal with the many factors involved in sail stability, simulations must relax the rigid body constraint of work up to now. An example of a code geometry that has been studied in simulation is shown in Figure 4.

benford_fig04

Figure 4 Simulation space for a rigid conical sail with pendulum bob payload [1]. The beamer is directly below the sail.

To address the beam-riding challenge, future simulation codes should include

Codes must also model noise in the system, arising from factors such as perturbations due to atmospheric turbulence, laser pattern variations as well as jitter in the beam and vibrational modes of the sail. While perturbations of the sail will surely excite oscillatory motion, the sail must be in a sufficiently deep ‘potential well’ to remain on the beam.

Conclusion

The parameter space of sail shape and beam shape has been studied to only a narrow, easily accessible extent. The conical sail with a payload hanging below at is the most studied and appears to have some stable regimes. But this is verified only by analytic modeling and limited simulation of the equations of motion. Mechanical aspects of the tether/payload/sail will affect stability and has not been explored. The spherical sail has been studied analytically and appears to be stable only inside a hollow beam, which substantially reduces the efficiency of propulsion.

There is much theoretical and experimental work to be done on beam-riding, an essential requirement of beam-driven propulsion. Beam-riding and sail stability analytical models have reached their limits. Computational models must be substantially improved. Such models can be validated by laboratory experiments. For such a complex problem, only experiments will be decisive.

Looking beyond the distant goal of Star Shot, beam powered sails can play a role in the coming era of interplanetary exploration and eventual commerce. The first useful beam-riding sails will come from such stability studies, which should be undertaken now. In this lower velocity and power regime the dynamics will play out. Such lessons can have great use over decades to come.



TOPICS: Astronomy; Science
KEYWORDS: beam; breakthrough; laser; riding; sail; starchips; starshot
Navigation: use the links below to view more comments.
first 1-2021-23 next last

1 posted on 06/24/2017 11:15:56 AM PDT by LibWhacker
[ Post Reply | Private Reply | View Replies]

To: LibWhacker

Cool. In 100 years they’ll be saying “It’s not exactly beam science!”


2 posted on 06/24/2017 11:22:22 AM PDT by bigbob (People say believe half of what you see son and none of what you hear - M. Gaye)
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker

it’s cool I guess but it is not going to inspire anyone. You can’t excite people or inspire kids to explore the hard sciences if you keep sending robots and chips into space.


3 posted on 06/24/2017 11:44:33 AM PDT by brucedickinson
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker

probably nothing the human race will get a better ROI on than investment in space propulsion


4 posted on 06/24/2017 12:12:23 PM PDT by thoughtomator
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker

Starchip... maybe Doritos will fund this is you let them put their logo on it.


5 posted on 06/24/2017 12:17:26 PM PDT by Kirkwood (Zombie Hunter)
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker

One question... where is the beam located ?


6 posted on 06/24/2017 12:31:58 PM PDT by UCANSEE2 (Lost my tagline on Flight MH370. Sorry for the inconvenience.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: UCANSEE2

Where is the beam located?

Sheesh, didn’t read the article? The beam hits the sail to make it go.


7 posted on 06/24/2017 12:45:10 PM PDT by ProtectOurFreedom
[ Post Reply | Private Reply | To 6 | View Replies]

To: UCANSEE2
That's what I'm wondering. Putting it almost anywhere involves more movement and noise. Then there's sheer distance necessitating an incredibly narrow angle, with any angle wider than the craft at distance is wasted energy - and we're talking a scale of one meter spread at one light year distance, 10^−16 degrees.
8 posted on 06/24/2017 12:48:08 PM PDT by ctdonath2 (It's not "white privilege", it's "Puritan work ethic". Behavior begets consequences.)
[ Post Reply | Private Reply | To 6 | View Replies]

To: LibWhacker

Until we figure out the anti-gravity drive propulsion systems that Bob Lazar worked on at Groom Lake (near Area 51) we will never travel to another star.


9 posted on 06/24/2017 12:57:27 PM PDT by Mr. K (***THERE IS NO CONSEQUENCE OF REPEALING OBAMACARE THAT IS WORSE THAN OBAMACARE ITSELF***)
[ Post Reply | Private Reply | To 1 | View Replies]

To: UCANSEE2; ctdonath2
The beam is a laser beam fired from earth at a "starchip," and that beam provides the propulsion for the miniature spacecraft. Yes, there are huge engineering challenges associated with this method of interstellar propulsion, but nothing in principle that can't be overcome -- at least no showstoppers have been identified yet.

This article explains it far better than I ever could. There's also a pretty interesting article about it on Wikipedia.

10 posted on 06/24/2017 1:30:48 PM PDT by LibWhacker
[ Post Reply | Private Reply | To 6 | View Replies]

To: Mr. K

But we can send miniature robotic craft.


11 posted on 06/24/2017 1:37:47 PM PDT by LibWhacker
[ Post Reply | Private Reply | To 9 | View Replies]

To: LibWhacker

Read “MOTE IN GOD’S EYE” - alien space craft uses laser
powered solar sail


12 posted on 06/24/2017 1:56:14 PM PDT by njslim
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker

So, probably 80 years or more round trip...

Wait a century or so and that time will be cut down to months or days.


13 posted on 06/24/2017 6:16:40 PM PDT by Crucial
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker

Not sure what the source of funding is, but NASA funding requires many aspects of diversity and islamic tenets...Don’t see any of this described in article.


14 posted on 06/24/2017 7:16:44 PM PDT by SuperLuminal (Where is another agitator for republicanism like Sam Adams when we need him?)
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker

How will this laser be powered?

L


15 posted on 06/24/2017 7:19:29 PM PDT by Lurker (America burned the witch.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: LibWhacker

And how will this sail be protected from impacts?

L


16 posted on 06/24/2017 7:20:40 PM PDT by Lurker (America burned the witch.)
[ Post Reply | Private Reply | To 1 | View Replies]

To: Lurker

>>>How will this laser be powered?<<<

Unicorn Farts and Liberal Empathy.


17 posted on 06/24/2017 7:23:11 PM PDT by Kickass Conservative ( THEY LIVE, and we're the only ones wearing the Sunglasses.)
[ Post Reply | Private Reply | To 15 | View Replies]

To: Crucial

No round trip. This technology is for robotic spacecraft. They won’t be coming back.


18 posted on 06/24/2017 7:47:57 PM PDT by LibWhacker
[ Post Reply | Private Reply | To 13 | View Replies]

To: Lurker

That’s one of the things they are studying. One approach calls for sending a large number of starchips (they’re “cheap”) to Alpha Centauri such that the probability of at least one of them surviving is large. If only one survives, the mission is a success.


19 posted on 06/25/2017 1:47:44 AM PDT by LibWhacker
[ Post Reply | Private Reply | To 16 | View Replies]

To: Lurker

I guess one of the most favored ideas at the moment is to use a “phased array” of lasers, powered by... Good question! That’s just one of the many things they’ll be looking at.


20 posted on 06/25/2017 2:03:06 AM PDT by LibWhacker
[ Post Reply | Private Reply | To 15 | View Replies]


Navigation: use the links below to view more comments.
first 1-2021-23 next last

Disclaimer: Opinions posted on Free Republic are those of the individual posters and do not necessarily represent the opinion of Free Republic or its management. All materials posted herein are protected by copyright law and the exemption for fair use of copyrighted works.

Free Republic
Browse · Search
General/Chat
Topics · Post Article

FreeRepublic, LLC, PO BOX 9771, FRESNO, CA 93794
FreeRepublic.com is powered by software copyright 2000-2008 John Robinson